
Accelerating
Throughput in
Permissioned
Blockchain
Networks

Contents

3 Executive Summary

4 The Challenge

5 Accelerator Approach

6 Implementation

8 Evaluation

12 Use Case Recommendations - Scenarios

13 Challenges with the Current Accelerator Approach

14 Discussion

16 Roadmap

18 Conclusion

www.samsungsds.com | 2

Accelerating Throughput in Permissioned Blockchain Networks

https://www.samsungsds.com/us/en

Executive summary

Accelerator is a software component developed by Samsung SDS that is designed to improve the
performance of a blockchain network in terms of transaction throughput. Inspired by multilevel
queue scheduling [1], Accelerator enables the blockchain network to deal with a large volume of
transaction requests from applications. Samsung SDS and IBM have engaged to validate the
applicability of Accelerator to Hyperledger Fabric networks and define a roadmap for integration of
Accelerator into the Hyperledger Fabric open source project. The team defined a test harness
around Hyperledger Caliper and Fabric running on a bare metal system in the IBM Cloud.

As a result of our efforts, we are able to publish consumable and repeatable results to the
Hyperledger Fabric community which demonstrate a significant increase in transaction throughput
with a minimal impact to latency. Results demonstrate up to 10x performance improvement. This
initial draft focuses on results attained prior to the publication of the source code for Accelerator
and the Caliper benchmark. These artifacts will be made public in early 2019 in order to build
support in the Hyperledger Fabric community for incorporating the Accelerator functions into the
Hyperledger Fabric open source project.

Accelerating Throughput in Permissioned Blockchain Networks

www.samsungsds.com | 3

https://www.samsungsds.com/us/en

The Challenge
A consistent challenge to implementers of blockchain solutions is the comparatively low
transaction rates that blockchain technology currently delivers. It is estimated, for example, that the
Bitcoin network achieves a rate of 7 transactions per second (TPS). With the increase in the variety
of blockchain use cases, the need for enhanced performance through higher TPS has reached
ever-heightening level. More specifically, there are blockchain use cases that require processing of
over thousands of transactions per second in real time. Examples of the cases might be processing
of data from numerous sensors or identity/authentication service provisioning.

Enterprise blockchain technology such as Hyperledger Fabric has proven capable of achieving
much higher rates than public blockchain implementations, but the pressure to achieve even
higher level of performance from the real-world use cases has been constant. This paper
documents an approach through which the transaction throughput of a permissioned blockchain
network can be increased significantly without changing the Hyperledger Fabric implementation.
Also discussed are the applicable implementation patterns as well as contraindicated use cases.

Accelerating Throughput in Permissioned Blockchain Networks

1 Image source: Adweek
2 Image source: ISN Global

www.samsungsds.com | 4

https://www.samsungsds.com/us/en

Accelerator Approach
Consensus is referred to the process by which a network of nodes provides a guaranteed ordering
of transactions and validates the block of transactions [2]. It is an unconditional process in the
blockchain system to provide trust to blockchain players, and it is generally composed of signing,
exchanging, ordering, validation of transactions, etc. However, as parts of these tasks such as
cryptographic operations are CPU-intensive [3] and some of processes such as validation of
transactions and blocks should be performed in serial [4], there can be performance bottleneck in
such systems. Therefore, it is generally considered that the transaction throughput of blockchain is
lower than that of the legacy systems since they do not commonly use the consensus for a
transaction settlement.

The key idea of Accelerator begins with collecting a few transactions which do not have correlation
to each other. Uncorrelated, here, refers to the transactions that do not access the same key or
address for ledger update, which means they are not likely to make ledger Multi-Version
Concurrency Control (MVCC) collisions described in [5] during the consensus phase. The next step
is having the grouped transactions consented upon together as opposed to individually. This is a
workable solution because the transactions don’t affect each other’s commitment results. The
simplest way to achieve this would be combining the uncorrelated transactions into a new
transaction and submitting the new one to the blockchain network for the consensus. With this
approach, more transactions can be processed under a single consensus phase and, as a result, it
consequently leads to the increase of performance for both read and write transaction
throughputs, i.e., RPS (Reads Per Seconds) and TPS (Transactions Per Seconds) [6], respectively.

Figure 1. Acceleration Approach

Figure 1 shows the example scenario of transaction acceleration discussed above. There are three
transactions, named Tx1, Tx2, and Tx3, and each individually tries to update ledger state with
different keys, A, B, and C. They are not correlated because they attempt to update values with the
different keys, so no MVCC collision is expected during validation. When Accelerator receives those
transactions during a specified period, for example 1 second, it creates a new transaction
containing A, B, and C. It then submits the transaction proposal to blockchain peers for
endorsement. In an endorsement peer, original transactions in the batched transaction are
segregated for transaction simulation [5], and the proposed result is returned to the Accelerator.

Accelerating Throughput in Permissioned Blockchain Networks

www.samsungsds.com | 5

Accelerator Endorsement Peer

Chaincode

Transaction
Segregation

Ledger

A=1
B=2
C=3

Proposal Result

Aggregator

Transaction
Aggregation

TxBatch =
{A=1, B=1, C=3}

Proposal of
Batched transaction

https://www.samsungsds.com/us/en

The Accelerator feature can be implemented in either client applications or servers such as API
gateway servers, which are used to provide convenient connection methods to blockchain
networks for users. Acceleration in server, named server-side acceleration, is advantageous to
throughput enhancement as it can utilize transactions from many clients for acceleration.
Client-side acceleration, on the other hand, is beneficial to the case that there is no such a proxy or
a gateway server in the blockchain network. Instead, additional implementation for acceleration
feature is required in the client application.

Implementation
In its current incarnation, Accelerator exists as a stand-alone server for server-side acceleration. It is
inserted between a blockchain application and Hyperledger Fabric networks as shown in Figure 2.
Accelerator consists of three major components, which are Classifier, Aggregator, and Router,
written in the Go programming language and utilizing Hyperledger Fabric Go SDK.

Figure 2. Accelerator as a stand-alone server between applications and Hyperleger Fabric

Components of Accelerator

The fundamental tasks of Accelerator are to:

• classify received transactions with their destination which can be determined by a combination of
 channel, chaincode, and function name,

• aggregate the classified transactions into a new batched transaction, and

• route the batched one to a blockchain network for consensus.

1. Classifier

All transactions requested by the applications are passed to Classifier and categorized according to
the transaction type. The transaction type is currently defined by a combination of the following
elements:

• Channel name

• Chaincode name

Accelerating Throughput in Permissioned Blockchain Networks

www.samsungsds.com | 6

275

https://www.samsungsds.com/us/en

• Function name in the chaincode

2. Aggregator

A dedicated queue is assigned for each transaction type to collect the classified transactions. The
classified transactions in a same batch should be in the same queue in Aggregator so that they can
be processed altogether. Aggregator decides if it waits or submits a batched transaction to Router
in accordance with the following conditions:

• Number of transactions

• Total size of transactions in bytes

• Wait time of the first transaction

• Occurrence of key duplication

Figure 3. Accelerator Engine

Aggregator makes a batched transaction composed of all transactions in the queue as soon as
when a combination of the conditions, which is generally given as a policy, is satisfied. For example,
we can define a policy with a 10 as the number of transactions for collection, 1 MB for total size, 1
second for wait time. If any of one of these conditions is satisfied, for example 10 transactions arrive
first, a batched transaction is generated and flushed out to Router.

A noticeable condition is checking the occurrence of key duplication, and it is used to compose the
batched transaction with uncorrelated transactions only. One of the implementation examples of
this feature is 1) keeping the records of keys of the transactions in Aggregator and 2) confirming
the key existence in the records whenever a new transition arrives in Aggregator. If any duplication
is found, a new batched transaction will be created with the transactions in the queue. In this case,
the newly arrived one is not contained in the batch to avoid the collisions and then occupies
another queue. This condition check must be preceded by the three conditions mentioned above.

Accelerating Throughput in Permissioned Blockchain Networks

www.samsungsds.com | 7

54%

Accelerator

Classifier Aggregator

Queue

Queue

Router

Endorsement Peer

Transaction
Segregation

Chaincode

https://www.samsungsds.com/us/en

3. Router

Router sends a batched transaction generated by Aggregator to an endorsement peer node
through Hyperledger Fabric SDK. Then, the peer operates a verification process for each transaction
in the batched transaction. Thus, a chaincode which segregates a given batched transaction into
the individual single transactions should be supplementary installed in the endorsement peer.
Finally, Router delivers the results to each application who requests the individual transaction
included in the batched transaction.

Evaluation
Software Test Configuration

The following diagram shows the software configuration used to run use case tests. It details the
main components in the test running on an IBM Cloud infrastructure as shown in Figure 4.

Figure 4. Configuration for performance evaluation

The software test configuration has the following components:

1. Caliper: This is the test harness technology used to deploy the test different components of the
test, run the tests, and analyze the gathered results. Please refer to an official website [7] for further
information.

2. Peer nodes: These are the Hyperledger Fabric nodes that host copies of the blockchain ledger. A
variable number can be configured; the results in this paper are for a configuration of 3 peers. The
peer and orderer nodes jointly form a blockchain network.

Accelerating Throughput in Permissioned Blockchain Networks

www.samsungsds.com | 8

https://www.samsungsds.com/us/en

3. Ordering node: This is the Hyperledger Fabric component that creates blocks of ordered
transactions and distributes them to the different peer nodes in the ledger. The peer and orderer
nodes jointly form a blockchain network.

4. Client applications: These are the applications that submit transactions to the network via
Accelerator. Client applications do not talk directly to peer and orderer nodes as they would do in a
normal Hyperledger Fabric network; they connect to Accelerator.

5. Accelerator: This component mediates interactions between client applications and the peer and
orderer nodes that form the blockchain network.

This software configuration is running on IBM Cloud with the following resources allocated:

• 32GB of RAM

• 3.8 GHz quad core CPU

• 10 Gigabit network

• 960GB SSD

These resources are available to all the components in the test configuration according to real-time
demand; the chaincode containers, peer and orderer nodes, client applications, and Accelerator
share the available network, storage and CPU resources.

Test Cases

The following use cases are run on this configuration.

1. Simple Query: A technical use case to measure simple ledger query on a single peer.

2. Simple Open: A technical use case to measure a simple update to a ledger.

3. Smallbank Query: A more “real world” query of a bank account in a ledger.

4. Smallbank Operations: A more “real world” update to a bank account held in a ledger

5. Smallbank Clash: A more realistic update to a bank account, with a variable degree of account
collisions requiring transaction resubmission.

In Simple Query, an application invokes a chaincode via Accelerator, which collects a set of
concurrent requests into a single batch (called a job). When the batch is full (according to an
Aggregator), Accelerator invokes a modified chaincode with the job. The chaincode modification
deblocks the job into individual invocations, which are then executed as normal. In Simple Query,

Accelerating Throughput in Permissioned Blockchain Networks

www.samsungsds.com | 9

https://www.samsungsds.com/us/en

Accelerating Throughput in Permissioned Blockchain Networks

www.samsungsds.com | 10

each invocation queries the ledger by key for a single state using the getState() API. The aggregated
response is returned to Accelerator, which dissembles it and notifies the applications with the result
of their query.

In Simple Open, processing proceeds as Simple Query, but the chaincode invocations involve state
changes rather than queries. Specifically, chaincode invocation updates the ledger by creating a
new state using the putState() API. The aggregated response is returned to Accelerator which
creates a transaction, orders it and waits to be notified that it has been committed. In then notifies
the individual applications that their transaction has been committed (or failed).

The Smallbank use cases are more realistic than the Simple use cases; they attempt to model a
ledger of bank accounts which are being queried or having funds transferred between them. Most
importantly, transaction collisions can occur where overlapping transactions are processed at the
nearly same time. Processing proceeds as Simple Open, but chaincode invocations are subject to
world state collisions. Specifically, each chaincode invocation updates the ledger with the
getState() and putState() APIs, but there is an opportunity for different transactions to update the
same state. Such a collision will result in an invalid job transaction being detected after the
transaction has been ordered, resulting in the failure of all transactions in a job.

Detailed Result

The graphs in Figure 5 correspond to the two basic forms of Accelerator use case – Simple Query
and Simple Open. For both use cases, we can see how the driven transaction rate on the x-axis
affects the achieved transaction rate on the y-axis; we vary the driven transaction rate, and the
achieved transaction rate is the dependent variable. In the base case, without Accelerator, we can
see linear growth up to 1,500 transactions per second (TPS). Above this rate, there is no gain in the
achieved rate no matter how much the driven rate is increased. The system is effectively saturated
at this point.

In the meantime, the result with Accelerator is significantly improved. We can see that for driven
transaction rates up to 1500 TPS, the achieved transaction rate grows in the same manner as the
base rate. However, with Accelerator, we are able to linearly drive query transactions up to an
achieved rate of 11,000. Above this rate, transactions start to queue, as with the base case. For
Simple Query, using Accelerator represents an improvement of approximately 600%. For Simple
Open, we can see that the achieved rates are less than Simple Query because this use case has
more work to do – transactions need to be executed, ordered then validated before they appear on
the ledger. In the base case, we can see a linear growth up to 450 TPS, but after this point, the
achieved rate again starts to plateau as the system becomes saturated.

Again, the result with Accelerator is significantly improved. We can see that there is near linear
growth up to an achieved transaction rate of 5,000 TPS, which represents an improvement of
1,000%. This is even better than query; the use of Accelerator is more advantageous for update
style transactions than query style transactions.

https://www.samsungsds.com/us/en

Figure 5. Performance benchmark of Simple scenario

Figure 6. Performance benchmark of Smallbank Operations without collision

 Figure 7. Performance benchmark of Smallbank Operations with clash

Accelerating Throughput in Permissioned Blockchain Networks

www.samsungsds.com | 11

https://www.samsungsds.com/us/en

The graphs in Figure 7 correspond to the more real-world versions of the use cases – Smallbank
query and Smallbank operations. For the Smallbank use cases, we can see very similar behavior to
the Simple use cases. Accelerator makes a significant difference in throughput for these more
real-world use cases. The improvement ratios are of the order of 300% and 600% respectively. We
continue to see that the use of Accelerator is more advantageous for update style transactions than
query style transactions, although both are significantly improved.

The biggest difference with Smallbank use cases are clear however, when collisions are introduced,
and the graphs below correspond to the more real-world versions of the ledger update use case
with collisions included. The first graph is the same as Smallbank Operations, but with collisions
occurring naturally. Up to about 3,000 TPS, collisions will not occur at any significant rate, and so
the achieved transaction rate follows the same trajectory as Smallbank Operations. However,
above this rate, collisions start to occur and increase, and thus affects the throughput rate. We see
as the driven rate is increased, achieved rate becomes the same as that without Accelerator.

In the second graph, a fixed driven rate of 3,000 TPS is used and the collision rate varied. The graph
shows the effect of increasing the collision rate on achieved TPS and latency on the y-axis. We can
see that as the collision rate is increased, the transaction rate declines, and the latency increases.

In summary, the Smallbank clash use case and the two graphs above show that the benefits of
Accelerator are lost once the rate of collision gets to about 10%. This reinforces the fact that for
Accelerator to work best, transactions should be independent of each other.

Use Case Recommendation - Scenarios
Simple Example for IoT
IoT devices and/or sensors applications represent a class of applications that exhibits characteristics
particularly suitable for Accelerator. Namely, IoT applications (1) require high throughput due to
potentially extremely high volumes of transactions and (2) are at the same time particularly
suitable for acceleration due to transaction independence. IoT applications typically collect data
and transactions from a high volume of independent devices with each device typically having its
own unique identifier and each device possibly periodically generating either time series data or
independent sensor readings which are not likely to correlate with other devices’ data because of
the data characteristics. Due to that, it is typically possible to record each transaction in a separate,
unique key which in turn leads to a very low possibility of the correlated data occurrence (e.g.,
transactions trying to update data with the same address or key at the nearly same time). In such
cases, Accelerator can aggregate many transactions without expecting collisions between
transactions. The client-side acceleration scheme may be used in an IoT Access Point.

Accelerating Throughput in Permissioned Blockchain Networks

www.samsungsds.com | 12

https://www.samsungsds.com/us/en

Simple Example for Financial Services
As the second class of applications, we have selected an example application scenario from the
Financial Services space in which transactions correlations and possible update conflicts are more
likely. This case has individual bank account holders sending transactions for money transfer that
may have transactions with many correlations. Because it is possible and, in some cases, even likely
that potentially many transactions can be associated with a particular account, it is more likely to
encounter transaction update conflicts that are trying to update the same key concurrently at
about the same time. Such conflict situation can make application of Accelerator less efficient as we
are going to illustrate. However, unless the transactions with higher correlation are generated at
the nearly same time, i.e., within the same block generation period (e.g. 1 sec), one can still expect
the Accelerator benefits. Server-side Acceleration may be suitable. In most practical scenarios in
this category while the conflicts and concurrent updates are possible, they will be typically spread
over longer period of time and therefore make the use of Accelerator still very suitable.

Not applicable/Contraindicated use cases, in summary
Accelerator may be less suitable for the cases where many simultaneous, concurrent transactions
are trying to update a very small number of addresses with the same keys. In such cases, the many
interdependent concurrent updates of the same key can lead to potentially many update conflicts
which in turn create a situation where Accelerator performance decreases substantially and
therefore makes its use less applicable. Such scenarios may include applications in which many
users or blockchain clients want to update data on a very small number of addresses or with the
same key values. For example, the scenario may include financial data exchanges (e.g., some stock
exchange scenarios) on a few public accounts to deal with many concurrent requests from a large
number of clients’ accounts (e.g., high volume of stock exchange transactions need to be recorded
or netted or settled with respect to a small number of accounts). In this case, the number of
aggregated transactions in a time (i.e., transactions that are “non-conflicting”) would be very small
so as to keep avoiding the collisions, which means there would be small or no acceleration gains in
such a case.

Challenges with the Current Accelerator
Approach
There are some challenges with the current Accelerator approach. They can be overcome by closer
integration with Hyperledger Fabric, but, as currently implemented, they represent limitations to its
adoption. These sub-sections explain the challenges and discuss how they might be overcome.

Transaction “blurring”
The transaction submitted by an application to Accelerator is not the transaction that appears on
the ledger. Instead, the ledger contains multiple transactions that have been “blurred” together.
This occurs because Accelerator blocks transactions into jobs, and the actual submitted transaction
is the sum of all the individual transactions within a job. This creates challenges for auditability, as

Accelerating Throughput in Permissioned Blockchain Networks

www.samsungsds.com | 13

https://www.samsungsds.com/us/en

users cannot look through the ledger and identify the transactions they have submitted. It makes it
difficult for applications, administrators and auditors to link the actual submitted transaction to the
one that appears on the ledger. This is a significant problem given purpose and value of a
blockchain as an immutable transaction log.

Transaction proposal “mis-signing”
Without Accelerator, the transaction that is submitted by an application is signed by it and the peer
that executes it, and these signatures are retained with the transaction as it is recorded in the
ledger. When Accelerator is used, the transaction that appears on the ledger is the result of a
collection of transactions – a job - and it is this aggregated transaction that is signed by Accelerator
and the peer. It means that the transactions that appear on the ledger are not signed by the
submitting applications, and again this presents a significant challenge to the current
implementation given the purpose and value of a blockchain as a true record of agreed
transactions.

User Chaincode Wrapper
Although it is a fairly mechanical process, chaincode developers have to write a chaincode wrapper
to de-block a job into its individual transactions that are then individually executed to generate an
aggregate transaction response. This is an extra development task and requires chaincode to be
re-installed and re-instantiated. As discussed below, this would be a relatively straightforward
feature to be built-into Fabric.

Non-standard APIs
Finally, the APIs provided by Accelerator to applications are only gRPC-based; they are significantly
different to the regular SDK programming languages. It means that applications which currently
use the JavaScript, Java or GOLANG SDKs have to change to exploit Accelerator. Again, this would
be a relatively straightforward feature to be built-into Fabric.

Transaction blurring, transaction mis-signing, user chaincode wrappers and non-standard APIs
could all be overcome by making Hyperledger Fabric aware of the concept of a job. The peers and
orderers that form a network could treat a job as a collection of transactions and treat them
accordingly at execution, ordering and validation time, making sure that transactions proposals,
and response signatures were preserved. In this way the benefits of aggregation would be gained
without these downsides. Transaction collisions cannot be overcome; other techniques not
discussed in this paper are required to alleviate this issue.

Discussion
Applicability
Accelerator provides the improved performance in terms of transactions per second when data are
less correlated with each other; e.g., data from a comparatively large number IoT sensor/edge
devices as they mostly generate sporadic data. When it comes to the entire volume of such

Accelerating Throughput in Permissioned Blockchain Networks

www.samsungsds.com | 14

https://www.samsungsds.com/us/en

transactions, the larger volume of data would lead to better performance since Accelerator works in
a way of aggregating up to enough number of transactions and committing them in a batch. That
is, according to what specific business use cases or scenarios Accelerator supports, its expected
performance benefits will vary. Therefore, it is recommended to consider applicability based on
such performance characteristics and experimental test results to get more precise TPS expected.

Adaptability
Accelerator can adapt to the entire blockchain network condition according to, for example, the
number of transactions that it is supposed to process in a given time. For example, if the number of
transactions that Accelerator receives as inputs is getting smaller, it would be better to decrease
Aggregator’s window size, i.e., the number of transactions for the aggregation, to reduce the
additional transaction latency [6], which can be caused by a wait time condition in the Aggregator.
In the meantime, if Accelerator is processing transactions more and more in time, it needs to
increase the window size to maximize the TPS. To enhance this capability, it is necessary to consider
developing additional accelerator monitoring and analytics components described in the following
sections.

Monitoring
Accelerator’s status data by monitoring can be utilized to maximize the adaptability. It collects
Accelerator-related system information such as:

• how many transactions are submitted during a specific time

• how many transactions are committed correctly

• how many batched transactions fail

• how long it takes to reach to the consensus and get finality

• the entire computing and network resource consumption, etc.

This information would be beneficial not only when system operators check the system health but
also when Accelerator Analytics, described in the following paragraph, decides when it should
increase or decrease the window size and even when it should turn on or off the Accelerator.

Analytics
Based on the information gathered by Accelerator Monitoring, Analytics can provide more
insightful adaptation capability to Accelerator. By analyzing transaction processing-related status
such as the number of inbound and outbound transactions, and their occurrence distribution in
time, Accelerator Analytics can suggest optimal parameters such as dynamic window size for
greater efficiency. Accelerator Analytics is a component where users and developers build the
appropriate models for specific use cases and they can load such models on. Accelerator, in the
meantime, will have handler mechanisms to interact with Accelerator Monitoring and Accelerator

Accelerating Throughput in Permissioned Blockchain Networks

www.samsungsds.com | 15

https://www.samsungsds.com/us/en

Analytics. In this sense, an Accelerator that is supplemented by both monitoring and analytics will
have dynamic adaptation capability, which can reduce the transaction latency while increasing
transaction throughput performance.

Roadmap
The purpose of this collaboration between IBM and SDS on the Accelerator is to, by running
efficiency and performance tests, propose additional functions for the Hyperledger projects such as
Hyperledger Fabric SDK, improve performance efficiency and functionality, and, ultimately,
integrate the additions with the IBM Blockchain Platform (IBP).

Socialize
The first stage, Socialize, took its shape through the first workshop between IBM and SDS. In this
stage, based on the results from the assessment of Accelerator that Samsung SDS and IBM worked
together, we hold the purpose to form this whitepaper collaboratively. This stage includes
preparation for us to share Accelerator in the next step, “INNOVATE”. Accordingly, the design
concept and principles, the problem background, the assumption of use cases and scenarios, main
functions of Accelerator, and the framework of testing and evaluation are explained in this
whitepaper. The underlying system is built by using as-is Hyperledger Fabric docker images that no
modification from the public github are implicated. We present the performance comparison
results on the system with and without Accelerator as well.

Innovate
The purpose of this stage is to develop an “Innovation Sandbox” available in a public github
repository [8] where anyone can download, test, and reproduce the expected performance results
using Accelerator on Hyperledger Fabric. This allows us to clearly demonstrate the level of
performance of improvement through Accelerator as well as to provide deeper understanding of
the technology described on the whitepaper. The Innovation Sandbox will be provided with a
docker image of Accelerator and a performance benchmark tool, which additionally has an adaptor
module based on Hyperledger Caliper open source [7] to connect Accelerator for performance
evaluation. Technical details will be presented to the audience who are working on/with
Hyperledger-based projects at technology conferences such as a technical session at IBM THINK.
This stage will provide a conduit for valuable feedbacks from the Fabric community with regard to
the appropriateness of including Accelerator into Fabric open source projects. Further, additional
use cases/refinements may also be identified.

Develop@Scale
In “DEVELOP@SCALE” stage, we target to release Accelerator as an open source component after
getting agreements from blockchain community, so that even more engineers can jointly develop
and improve Accelerator together. Specifically, the current version of Accelerator can be refactored
and incorporated into one of Hyperledger opensource projects. For example, the client-side
acceleration approach can be embedded into Hyperledger Fabric SDK in this stage first. Other

Accelerating Throughput in Permissioned Blockchain Networks

www.samsungsds.com | 16

https://www.samsungsds.com/us/en

Fabric enhancements made at this point will be under consideration to integrate alongside the
Accelerator capability into the open source. Also, along with opening the source code to the public,
Samsung or IBM may design the additional tools (not subject to open source) in need for
Accelerator, for example, deployment and monitoring tools, and the systems from such design will
be useful when Accelerator is applied to the commercially operating services such as the IBM
Blockchain Platform. Additional components, such as Accelerator Analytics described in the
Discussion may also be designed during this stage to provide additional business opportunities
derived from the incorporation of Accelerator into Hyperledger opensource projects.

Optimize
“OPTIMIZE” stage is to further optimize and advance Accelerator. More specifically, Accelerator will
be in a form of server-side one, adding a service discovery function to consider multi-region
operation where a number of peers are geographically dispersed and aligning with other
enhancements that will be made at this point in Hyperledger Fabric. If the server-side Accelerator is
added to the client-side one from the previous stage, its performance benefits will be even
improved because the traffic from more endpoints and client software can be intensively collected
and processed together at the server-side Accelerator. In addition, Accelerator can reach to
comparatively better performance if the client (with Accelerator) is geographically close to peer
node in Fabric network while it would suffer from performance degradation if the clients are
geographically dispersed.

Accelerating Throughput in Permissioned Blockchain Networks

www.samsungsds.com | 17

https://www.samsungsds.com/us/en

Conclusion

Samsung SDS and IBM have developed and evaluated Accelerator intensively and
formulated roadmaps to work with open source communities. Accelerator consists
of three major and one supplementary component: Classifier, Aggregator, Router,
and the chaincode installed in endorsement peers. All components work to
increase TPS in a way of bundling uncorrelated transactions in a batched
transaction and submitting it to the Hyperledger Fabric network which can lead to
reduce the total required number of endorsement procedures. By deploying
Accelerator in front of the Hyperledger Fabric network and connecting to peer
nodes, we have successfully developed Accelerator without any modification on
Hyperledger Fabric at this phase. According to our evaluation and assessment,
Accelerator reaches up to 10x TPS performance on IBM Cloud testing environment.
By its design, Accelerator can be easily plugged into an existing Hyperledger
Fabric-based blockchain network, and we recommend that current users of
Hyperledger Fabric try it out during the “Innovate” phase (https://github.com/
nexledger/accelerator).

Accelerator’s performance is affected by the characteristics of data and
transactions. If they are strongly correlated and the correlations occur at the nearly

Accelerating Throughput in Permissioned Blockchain Networks

www.samsungsds.com | 18

https://www.samsungsds.com/us/en

same time, the throughput gain in terms of TPS will not be as high as ten times. For
example, a high-frequency trading system would not easily expect the best
performance benefits. A more adaptable use case is the one where transactions are
uncorrelated or correlated but sporadic. Examples may include not only an IoT
scenario, but financial services such as Smallbank operations shown in Evaluation
section. In such use cases, Accelerator is able to show the best performance
improvement.

Authors
Samsung: Kyusang Lee, Changsuk Yoon, Kiwoon Sung (nexledger@samsung.com)

IBM: Nick Lincoln, Kangwuk Heo, Roman Vaculin, Robert Blessing-Hartley, Anthony
O’Dowd (rhartley@us.ibm.com)

References
1] Chopra, R. (2016) Operating System - A Practical Approach, S Chand & Co Ltd

[2] Hyperledger Architecture Working Group, Hyperledger Architecture, Volume 1 - Introduction to
Hyperledger Business Blockchain Design Philosophy and Consensus

[3] Elli Androulaki, et al. Hyperledger Fabric: A Distributed Operating System for Permissioned
Blockchains. In Proceedings of the Thirteenth European conference on Computer systems, EuroSys
’18, New York, NY, USA, 2018. ACM.

[4] Thakkar P, et al. Performance benchmarking and optimizing Hyperledger Fabric Blockchain
Platform. arXiv preprint arXiv:1805.11390. 2018.

[5] https://hyperledger-fabric.readthedocs.io/en/release-1.4/readwrite.html

[6] Hyperledger Performance and Scale Working Group, Hyperledger Blockchain Performance
Metrics

[7] Hyperledger Caliper, https://www.hyperledger.org/projects/caliper

[8] Innovation Sandbox, https://github.com/nexledger/accelerator

Accelerating Throughput in Permissioned Blockchain Networks

Copyright © 2019 Samsung SDS America, Inc. All rights reserved. This document is provided for information purposes only. The contents of this document are subject to change without notice.

About Samsung SDS America, Inc.
Samsung SDS America (SDSA) is the U.S. subsidiary of Samsung SDS, a $8B global software solutions and IT services company. SDSA helps
companies optimize their productivity, make smarter business decisions, and improve their competitive positions in a hyper-connected economy using our
enterprise software solutions for mobility, security and advanced analytics.

Contact Us
To learn more about Samsung SDS America, Inc. visit www.samsungsds.com/us/en or email us at bd.sdsa@samsung.com.

https://www.samsungsds.com/us/en
mailto:bd.sdsa%40samsung.com?subject=

