

Techtonic 2021

Partner

Disrupt

GNN을 이용한 **악성코드 탐지**

Why do we need AI-based malware detection?

네트워킹 증가 - Cloud, Edge IoT, 5G/6G 발전 - 세계 인구 77% 연결 예상 [화웨이 2025 Global Industry Vision] 데이터 양, 속도, 종류 증가 - 약 23% 탐지된 공격 분석 미흡 - 약 15% 자동화 공격 증가 [Capgemini 보고서, 2019]

해커의 능력 증대 - 매일 약 200억건의 보안 위협 사례 보고 [Cisco, 2018] AI 기반 해킹 - 사람보다 두배 이상 효과적 스피어 피싱 트위터 공격 수행 SNAP_R AI [ZeroFox, 2019]

Feature Engineering / Embedding

Binary Code

0000000	4D	5A	90	00	03	00	00	00	04	00	00	00	FF	FF	00	00	B8	00	00	00	MZ
0000014	00	00	00	00	40	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000028	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000003C	E0	00	00	00	0E	1F	BA	0E	00	B4	09	CD	21	B8	01	4C	CD	21	54	68	!!!
0000050	69	73	20	70	72	6F	67	72	61	6D	20	63	61	6E	6E	6F	74	20	62	65	is program cannot be
0000064	20	72	75	6E	20	69	6E	20	44	4F	53	20	6D	6F	64	65	2E	ØD	ØD	ØA	run in DOS mode
0000078	24	00	00	00	00	00	00	00	4F	66	CD	7B	0B	07	A3	28	0B	07	A3	28	\$0f.{((
000008C	0B	07	A3	28	1F	6C	A6	29	0A	07	A3	28	1F	6C	A0	29	0A	07	A3	28	(.l.)(.l.)(
00000A0	1F	6C	A7	29	1F	07	A3	28	1F	6C	A2	29	1A	07	A3	28	0B	07	A2	28	.l.)(.l.)((
00000B4	95	07	A3	28	1F	6C	AB	29	02	07	A3	28	1F	6C	5C	28	0A	07	A3	28	(.l.)(.l\((
00000C8	1F	6C	A1	29	0A	07	A3	28	52	69	63	68	0B	07	A3	28	00	00	00	00	.l.)(Rich(
00000DC	00	00	00	00	50	45	00	00	4C	01	05	00	21	56	1E	ЗA	00	00	00	00	PEL!V.:
00000F0	00	00	00	00	E0	00	02	01	0B	01	0E	14	00	64	00	00	00	1E	99	03	d
0000104	00	00	00	00	00	6A	00	00	00	10	00	00	00	80	00	00	00	00	40	00	j
0000118	00	10	00	00	00	02	00	00	0A	00	00	00	0A	00	00	00	06	00	00	00	
000012C	00	00	00	00	00	D0	99	03	00	04	00	00	4B	2D	9A	03	02	00	40	C1	K@.
0000140	00	00	04	00	00	20	00	00	00	00	10	00	00	10	00	00	00	00	00	00	
0000154	10	00	00	00	00	00	00	00	00	00	00	00	8C	A2	00	00	B4	00	00	00	
0000168	00	C0	00	00	E4	FF	98	03	00	00	00	00	00	00	00	00	00	86	99	03	
000017C	88	23	00	00	00	C0	99	03	88	08	00	00	10	14	00	00	54	00	00	00	.#T
0000190	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00001A4	00	00	00	00	08	10	00	00	40	00	00	00	00	00	00	00	00	00	00	00	@
00001B8	00	A0	00	00	88	02	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00001CC	00	00	00	00	00	00	00	00	00	00	00	00	2E	74	65	78	74	00	00	00	text
00001E0	C4	62	00	00	00	10	00	00	00	64	00	00	00	04	00	00	00	00	00	00	.bd
00001F4	00	00	00	00	00	00	00	00	20	00	00	60	2E	64	61	74	61	00	00	00	
0000208	48	1A	00	00	00	80	00	00	00	02	00	00	00	68	00	00	00	00	00	00	н
0000210	00	00	00	00	00	00	00	00	40	00	00	C0	2E	69	64	61	74	61	00	00	@idata
0000230	52	10	00	00	00	A0	00	00	00	12	00	00	00	6A	00	00	00	00	00	00	R
0000244	00	00	00	00	00	00	00	00	40	00	00	40	ZE	12	/3	12	63	00	00	00	@@.rsrc
0000258	E4	FF	98	03	00	00	00	00	00	00	99	03	00	70	00	00	00	00	00	00	
0000260	00	00	00	00	00	00	00	00	40	00	00	40	ZE	12	05	10	10	63	00	00	@@.reloc
0000280	88	80	00	00	00	00	99	20	00	ØA	00	00	00	10	99	60	00	00	00	00	
0000294	00	00	00	00	00	00	00	00	40	00	00	42	00	00	00	00	00	00	00	00	@B

.!..L.!Th am cannot be DOS mode.... .Of.{...(...()...(.l.)...((.l.)...(...(...(.l\(...(Rich...(.... L...!V.:....d.....@.K-....@.T... @....text... .d..... ..`.data...h.... @....idata..j.... @..@.rsrc... @..@.reloc..

Vector

1. Feature Engineering (Extraction) ex. Number/length/entropy of PE sections

2. Feature Embedding

(Dis)similar objects \rightarrow (dis)similar vectors Low-dimensional vectors are preferred

Problem Space

Feature Space

Problem Space

https://en.wikipedia.org/wiki/Abstract_syntax_tree https://en.wikipedia.org/wiki/Control-flow_graph Wikipedia.org CC BY-SA 4.0

Mikolov et al., Efficient Estimation of Word Representations in Vector Space, 2013 (https://arxiv.org/pdf/1301.3781.pdf) Techtonic 2021 6

Embedding: Asm2Vec

Ding, Fung & Charland, Asm2Vec: Boosting Static Representation Robustness for Binary Clone Search against Code Obfuscation and Compiler Optimization, IEEE S&P, 2019

Duan et al., DeepBinDiff: Learning Program-Wide Code Representations for Binary Diffing, NDSS, 2020

Embedding: DeepBinDiff

DeepBinDiff: an embedding learned from two binaries on a merged CFGs

An issue: graph information is implicit, being dissolved in the embedding vectors (Asm2Vec, DeepBinDiff)

Scarselli et al., The Graph Neural Network Model, IEEE Transactions on Neural Networks, 2009

Graph Neural Nets (GNNs)

node label, edge labels, neighboring node states/labels

Local transition function
$$oldsymbol{x}_n = f_{oldsymbol{w}}(oldsymbol{l}_n, oldsymbol{l}_{\mathrm{co}[n]}, oldsymbol{x}_{\mathrm{ne}[n]}, oldsymbol{l}_{\mathrm{ne}[n]}) \\ oldsymbol{o}_n = g_{oldsymbol{w}}(oldsymbol{x}_n, oldsymbol{l}_n) \\ \mbox{Local output function} \end{cases}$$

Learning: fixed-point problem

$$\boldsymbol{x}_n(t+1) = f_{\boldsymbol{w}}(\boldsymbol{l}_n, \boldsymbol{l}_{\text{co}[n]}, \boldsymbol{x}_{\text{ne}[n]}(t), \boldsymbol{l}_{\text{ne}[n]})$$
$$\boldsymbol{o}_n(t) = g_{\boldsymbol{w}}(\boldsymbol{x}_n(t), \boldsymbol{l}_n), \qquad n \in \boldsymbol{N}.$$

Xu et al., How powerful are graph neural networks, ICLR 2019

Graph Isomorphism Issues in GNN

GraphSage (NIPS 2017)

Major GNN operations:

 $a_{v}^{k} = AGGREGATE^{k}(\{h_{u}^{k-1}: u \in N(v)\})$

 $h^k = COMBINE^k(h_v^{k-1}, a^k)$

 $a_{v}^{k} = MAX(ReLU(W \cdot h_{u}^{k-1}, \forall u \in \mathcal{N}(v)))$

Fails to distinguish multi-sets with the same distinct elements

GCN (ICLR 2017)

 $h_v^k = \operatorname{ReLU}(W \cdot \operatorname{MEAN}\{h_u^{k-1}, \forall u \in \mathcal{N}(v) \cup \{v\}\})$

Fails to distinguish proportionally equivalent multi-sets

Xu et al., How powerful are graph neural networks, ICLR 2019

Graph Isomorphism Net (GIN)

GIN: use the summation as the aggregation function

$$h_v^k = \mathrm{MLP}(h_v^{k-1} + \sum_{v \in \mathcal{N}(v)} h_u^{k-1})$$

Theorem: GNN is as powerful as the Weisfeiler-Lehman test (test of graph isomorphism) if the combine and aggregate functions of GNN are injective in countable space

Challenges & Discussion

Solution Binary packing and obfuscation

- 유효한 정보를 얻기 위한 unpacking 또는 비난독화 필요

✓ CFG generation and cost

- 오픈소스 도구 사용시 오류 처리
- 노드 수가 많은 CFG 생성 시간 및 학습 시간 이슈

✓ 성능 향상을 위한 데이터 추가 확보 필요

- AI기반 악성코드 탐지기 학습을 위한 KISA 악성코드 탐지 challenge 데이터셋의 유효성 확인
- 성능 향상을 위한 추가 데이터 확보 필요

Thank you

SAMSUNG SDS