

Techtonic 2021

Partner

Disrupt

초거대 AI 연구를 위한 HW / SW 기반 기술 이해

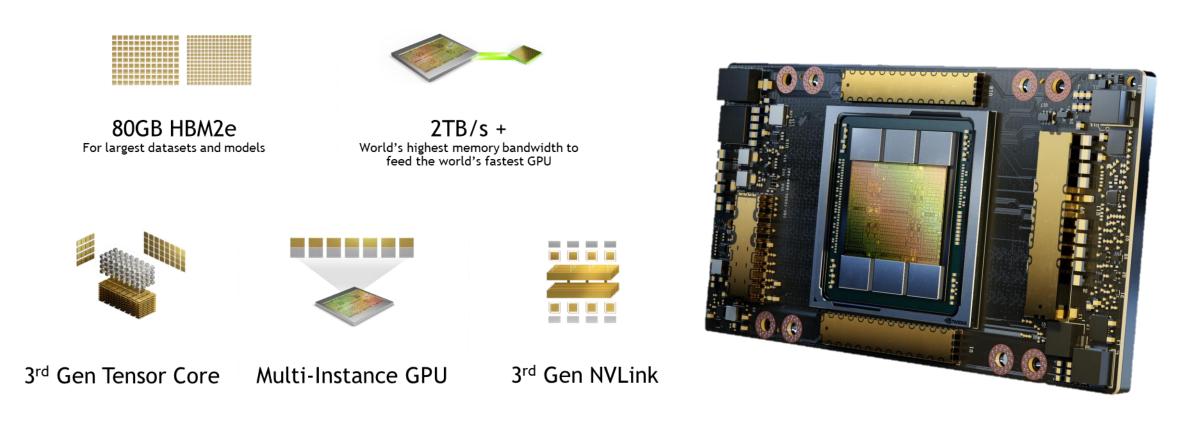
Discussion

- Supercomputer Architecture for Hyperscale AI Research
- Distributed Training for Large-scale NLP Research on Supercomputer
- Next-generation Supercomputer System Architecture

Supercomputer Architecture for Hyperscale Al Research

NVIDIA A100 80GB GPU

Highest Performing AI Supercomputing GPU



SXM FOR MULTI-GPU

Highest Performing AI Supercomputing GPU

2X Simulation

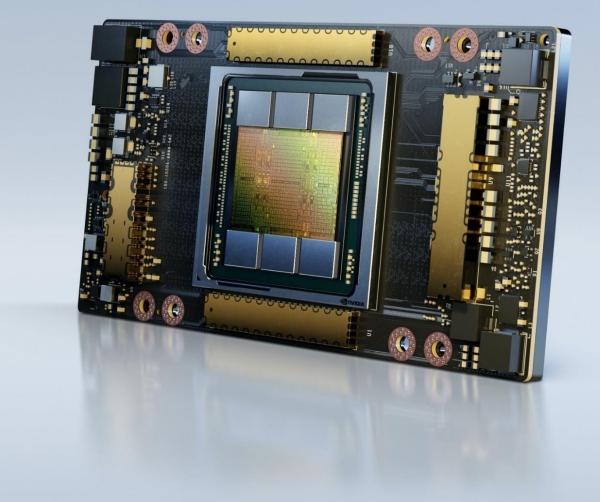
Quantum Espresso

2X Big Data Analytics 10 TB Retail Benchmark **AI Training** DLRM Recommender

1.25X

MIG Inference RNN-T Speech Recognition Energy Efficiency Shatters 25 GF/W

1.25X



Speedups Normalized to Number of GPUs | Comparisons to A100 40GB | Measurements performed on DGX A100 servers | Training: DLRM, Huge CTR, Criteo Terabute Click Logs (TIB) dataset, DGX A100: 146x A100 40GB vs. 8x A100 80GB, Normalized throughput=2.6X | Data Analytics: big data benchmark with RAPIDS(0.16), BlazingSQL(0.16), DASK(2.2.0), 30 analytical retail queries, ETL, ML, NLP, 96x A100 40GB v: 48x A100 80GB, Normalized throughput= 1.9X | HPC: Quantum Espresso - CHT10POR8, 40x A100 40GB vs 20x A100 80GB, Normalized throughput=1.8X |

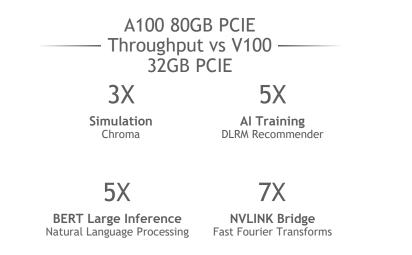
Al Inference: RNN-T (MLPerf 0.7 Single stream latency), DGXA100: A100 40GB vs A100 80GB on 1MIG@10GB when configured for 7MIC

PCIE FOR SINGLE GPU

Highest Performing AI Supercomputing GPU

Flexible Deployment Option for Mainstream OEM Servers

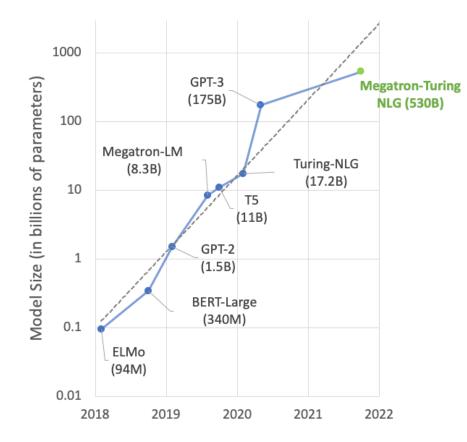
Excellent Upgrade Path for V100 32GB PCIE Customers



A100 40GB PCIE and A100 80GB PCIE using GIGABYTE G482-252-00 AMD EPYC 7742@2.25GHz 3.4GHz Turbo (Rome) HT Off System memory 512GB @ 3.2 GHz; V100 32GB PCIE using SMC SYS-4029GP-TRT Gold 6240@2GHz 3.3GHz Turbo (Cascade Lake) HT On System memory 384GB @ 7.GHz; Driver R470. Chroma szscl21_24_128 Total Time (s) x1 GPU F922 NCCL 2.8.4 | DLRM Training 1 GPU BS 32768; PyTorch FP32/TF32; cuDNN 8.2.0.41; NCCL 2.9.6; DL 21.04 | BERT Large Inference TensorFlow FP32/TF32 BS 8 Sequence Length 384 XLA NCC 21.04 FP32/TF32 | CuFFT – NVLINK FP32; 1583x456384

BUT DATA AND MODEL SIZE IS EXPLODING

NVIDIA and Microsoft train 530B MT-NLG model using DeepSpeed and Megatron



Dataset	Dataset source	Tokens (billions)	Weight (%)	Epoch s
Books3	Pile dataset	25.7	14.3	1.5
OpenWebText2	Pile dataset	14.8	19.3	3.6
Stack Exchange	Pile dataset	11.6	5.7	1.4
PubMed Abstracts	Pile dataset	4.4	2.9	1.8
Wikipedia	Pile dataset	4.2	4.8	3.2
Gutenberg (PG- 19)	Pile dataset	2.7	0.9	0.9
BookCorpus2	Pile dataset	1.5	1.0	1.8
NIH ExPorter	Pile dataset	0.3	0.2	1.8
Pile-CC	Pile dataset	49.8	9.4	0.5
ArXiv	Pile dataset	20.8	1.4	0.2
GitHub	Pile dataset	24.3	1.6	0.2
CC-2020-50	Common Crawl (CC) snapshot	68.7	13.0	0.5
CC-2021-04	Common Crawl (CC) snapshot	82.6	15.7	0.5
RealNews	RealNews	21.9	9.0	1.1
CC-Stories	Common Crawl (CC) stories	5.3	0.9	0.5

https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/

ISSUE: LIMITED MEMORY SIZE IN BIG MODEL TRAINING

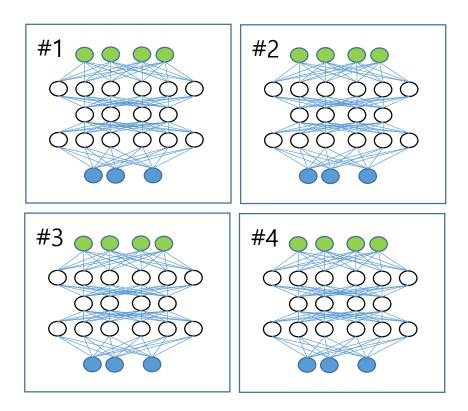
NVIDIA Megatron

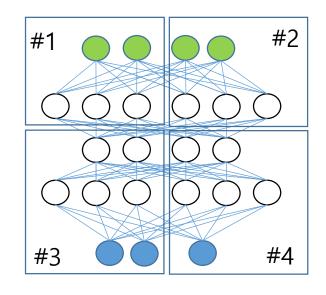
Model size	Hidden size	Number of layers	Number of parameters (billion)	Model-parallel size	Number of GPUs	Batch size	Achieved teraFlOPs per GPU	Percentage of theoretical peak FLOPs	Achieved aggregate petaFLOPs
1.7B	2304	24	1.7	1	32	512	137	44%	4.4
3.6B	3072	30	3.6	2	64	512	138	44%	8.8
7.5B	4096	36	7.5	4	128	512	142	46%	18.2
18B	6144	40	18.4	8	256	1024	135	43%	34.6
39B	8192	48	39.1	16	512	1536	138	44%	70.8
76B	10240	60	76.1	32	1024	1792	140	45%	143.8
145B	12288	80	145.6	64	1536	2304	148	47%	227.1
310B	16384	96	310.1	128	1920	2160	155	50%	297.4
530B	20480	105	529.6	280	2520	2520	163	52%	410.2
1T	25600	128	1008.0	512	3072	3072	163	52%	502.0

DISTRIBUTED TRAINING IS NECESSARY

- Data Parallelism
- Model Parallelism

DATA PARALLELISM VS. MODEL PARALLELISM





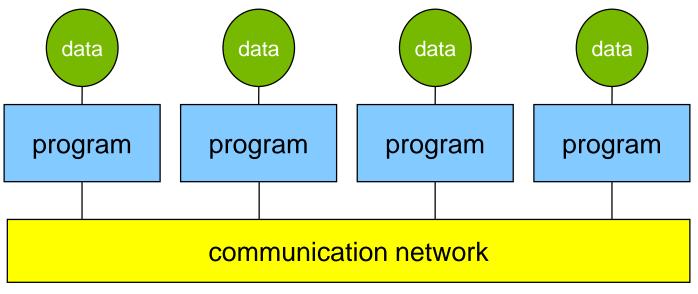
Model Parallelism

Data Parallelism

DATA COMMUNICATION IN DISTRIBUTED COMPUTING

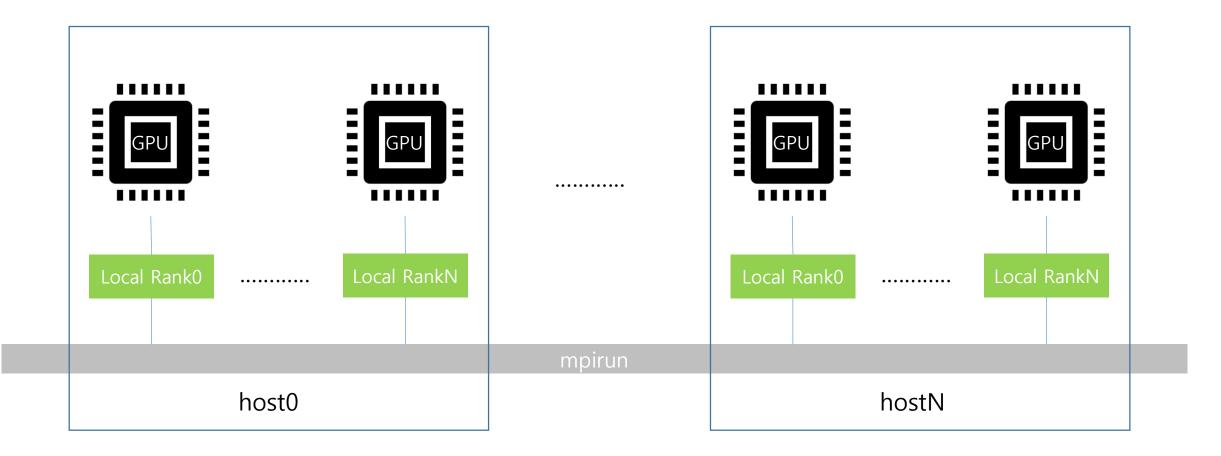
MPI (Message Passing Interface) - https://www.mpi-forum.org/

- API for sending and receiving messages between tasks or processes
- A way of data communication between distributed processes
- Point-to-point communication & Collective communication



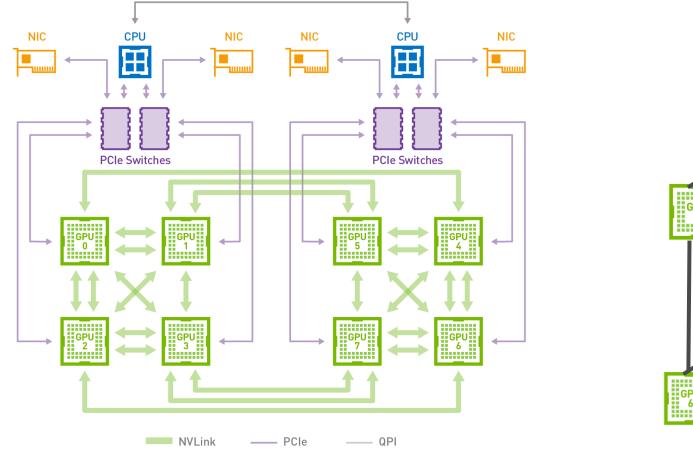
MESSAGE PASSING IN GPU SYSTEMS

Collective Communication is Important in Large-scale GPU cluster

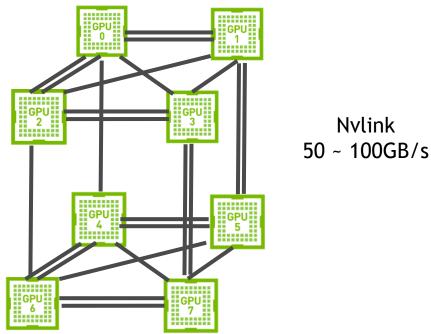


INSIDE GPU SERVER – V100 NVLINK INTERCONNECT

No NVSwitch

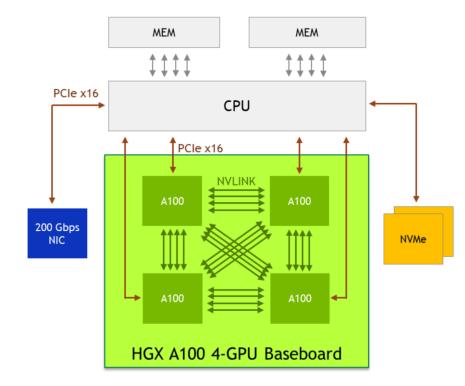


GPU NVLINK Topology

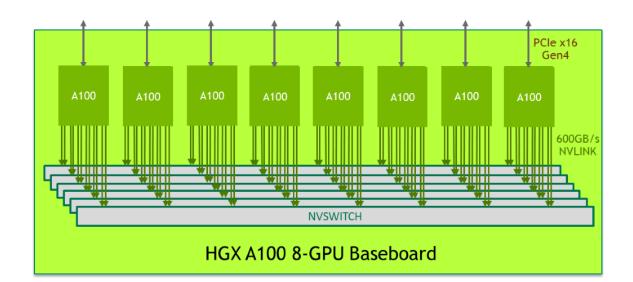


INSIDE GPU SERVER – A100 NVLINK INTERCONNECT

No NVSwitch in 4 GPU node and NVSwitch in 8 GPU node



Nvlink without Nvswitch 200GB/s



Nvlink with Nvswitch 600GB/s

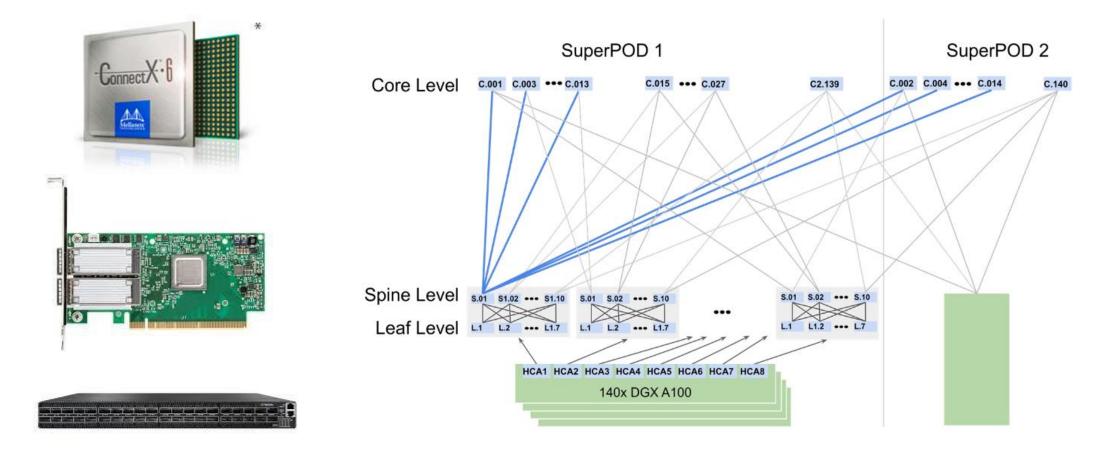
INSIDE GPU SERVER – PCIE INTERCONNECT

Hierarchical Topology with PCIe Switch



NETWORK INTERCONNECT FOR GPU CLUSTER

200G HDR Infiniband with Non-blocking FAT-tree Topology

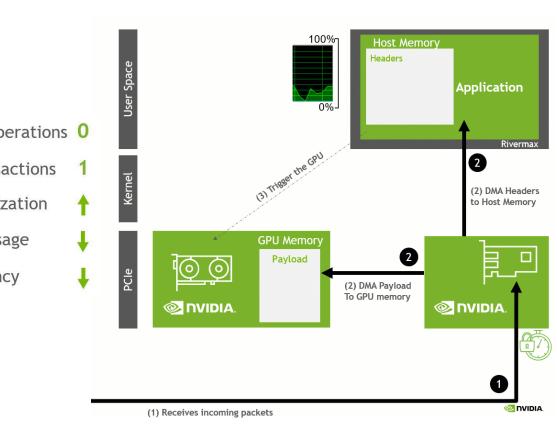


GPUDIRECT

Direct Data Communication Between GPU and Peripheral Devices

100%-Host Memory Headers Payload Space Application User 0% 1 Full copy operations 0 Rivermax (4) Trieser the GPU 2 PCle transactions 2 Kernel (2) DMA Packet to (3) DMA Packet **GPU** utilization from Host Memory Host Memory To GPU memory **CPU** usage **GPU** Memory Ę Payload 3 \bigcirc \odot PCle Latency 👁 NVIDIA. 1 (1) Receives incoming packets

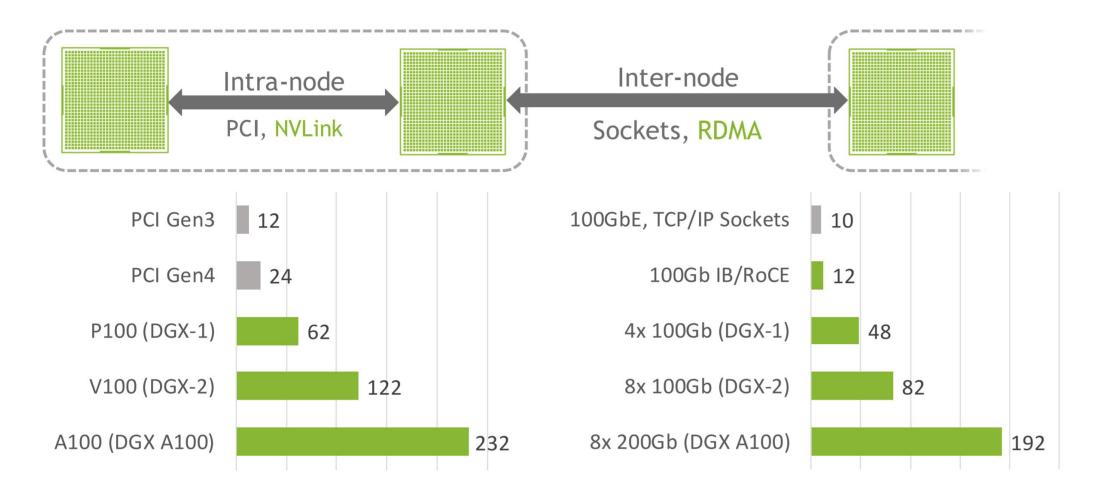
Classic data processing



GPUDirect RDMA

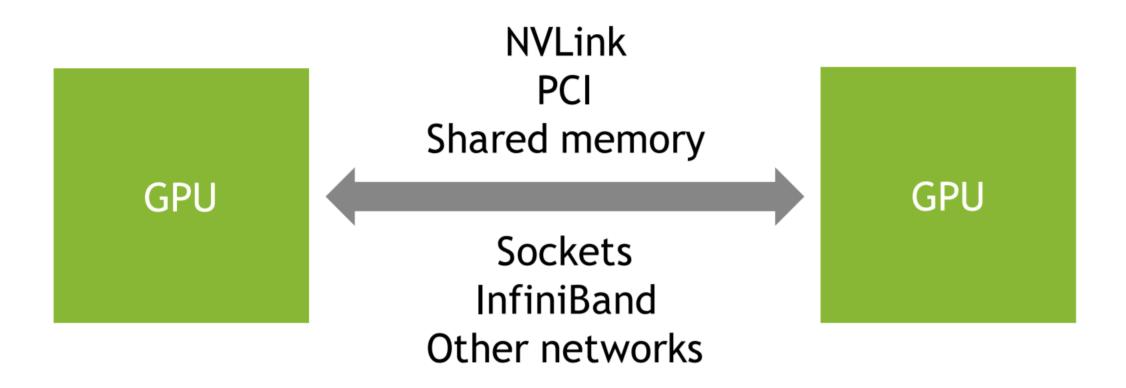
INTER-GPU COMMUNICATION

Need to consider heterogeneous environment



NCCL (NVIDIA COLLECTIVE COMMUNICATION LIBRARY)

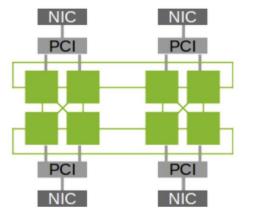
Optimized Inter-GPU Communication Library in a Large-scale GPU cluster

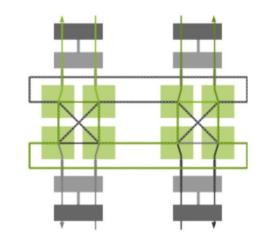


NCCL ARCHITECTURE

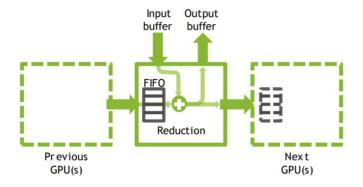
Optimized for All Platforms

Topology Detection





Graph Search



Graph Connect

Optimized CUDA Kernels

SUMMARY

- Hyperscale AI Research: Supercomputer needed
- Distributed Training: Model Parallelism + Data Parallelism
- Supercomputer: SW platform should understand HW architecture well

Distributed Training for Large-scale NLP Research on Supercomputer

NVIDIA MEGATRON-LM

Transformer-based Framework for Training Multi-Billion Parameter Language Model

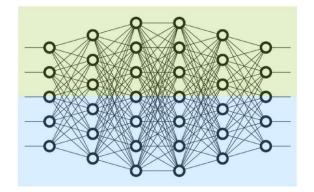
- Optimized for Training Big NLP model
 - Model Parallel (Tensor / Pipeline Parallel)
 - Data Parallel
 - Multi-Node Training
 - Automatic Mixed Precision (FP16)

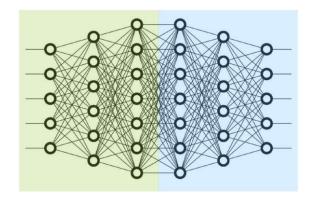
Repo: https://github.com/NVIDIA/Megatron-LM

MODEL PARALLELISM IN TRANSFORMER-BASED MODEL

- Intra-layer (Tensor) Parallelism
 - Parallel GEMM (General Matrix Multiplication)

- Inter-layer (Pipeline) Parallelism
 - Minibatch splitting and Pipeline bubble

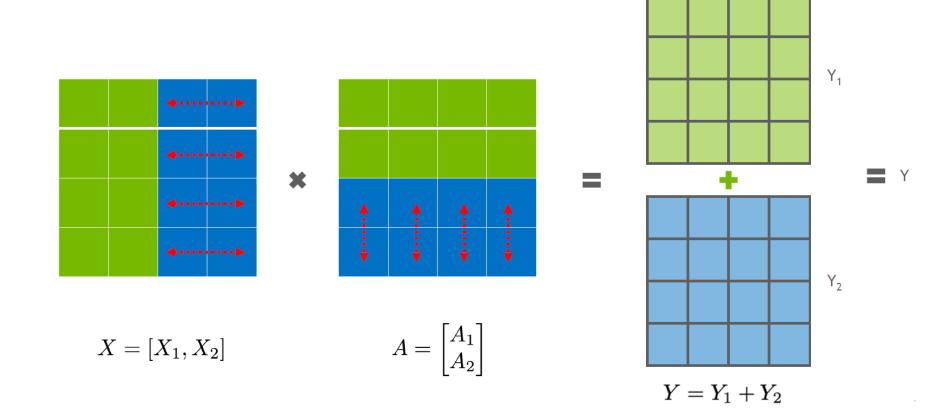




https://github.com/NVIDIA/Megatron-LM

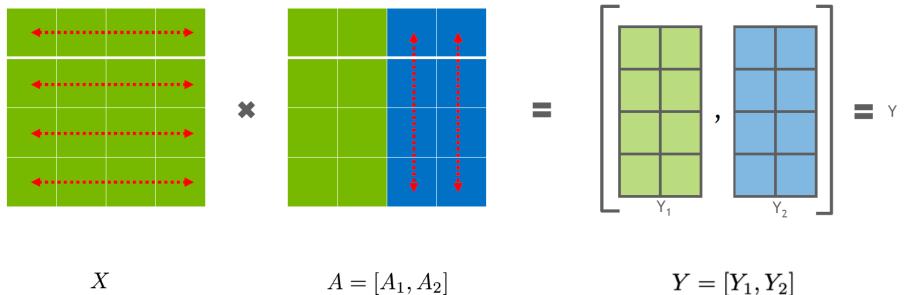
HOW TENSOR PARALLELISM IS WORKING

Row-wise Parallel GEMMs



HOW TENSOR PARALLELISM IS WORKING

Column-wise Parallel GEMMs



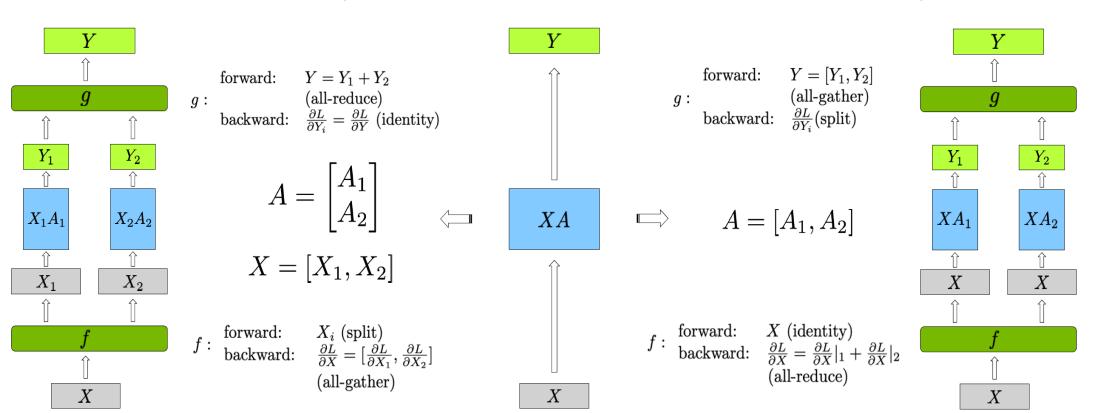
X

 $Y = [Y_1, Y_2]$

HOW TENSOR PARALLELISM IS WORKING

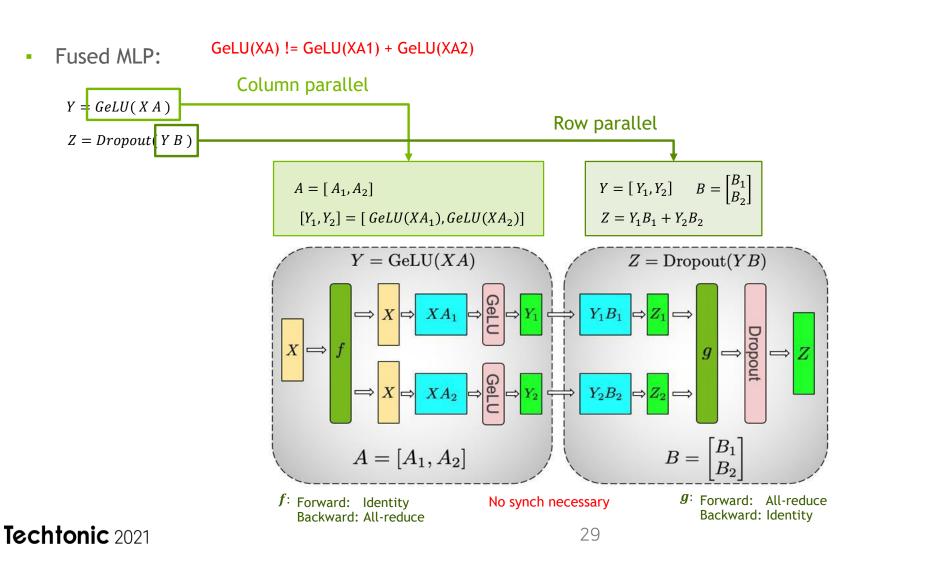
How Tensor Parallelism is Working in Linear Layer

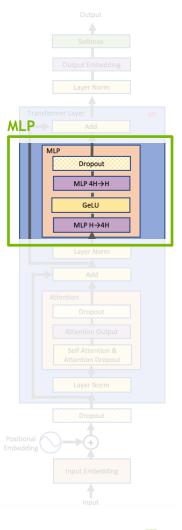
Row Parallel Linear Layer



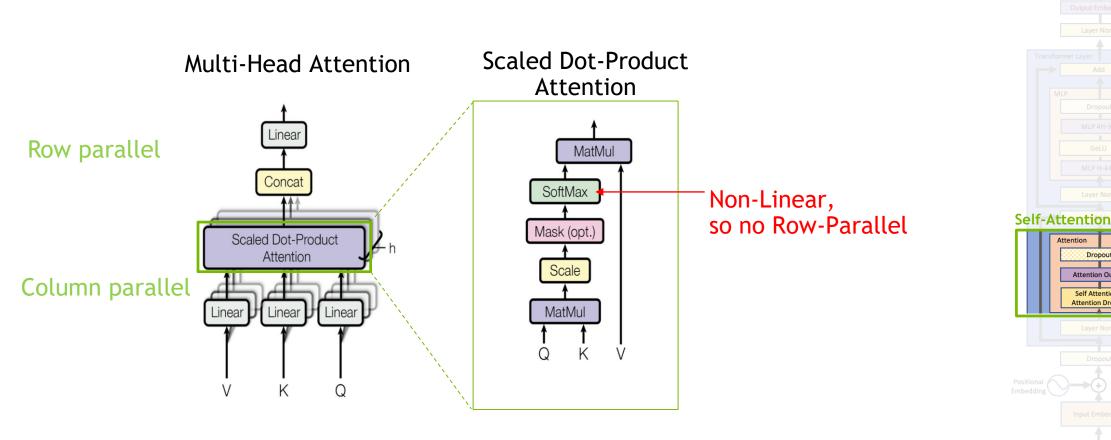
Column Parallel Linear Layer

How Tensor Parallelism is Working in Fused MLP





How Tensor Parallelism is Working in Fused Self-Attention



Techtonic 2021

Attention

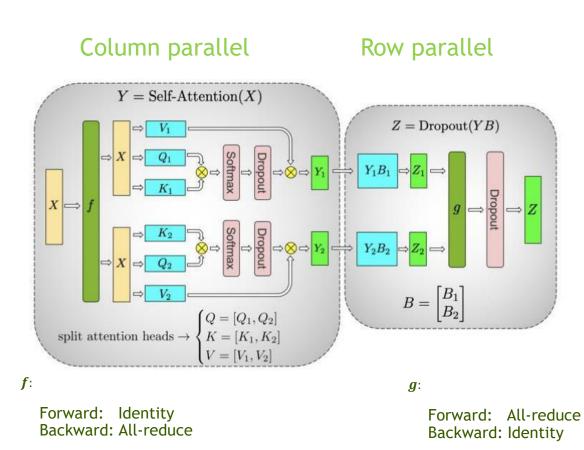
Dropout

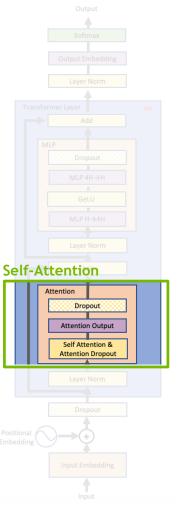
Attention Output

Self Attention & Attention Dropout

How Tensor Parallelism is Working in Fused Self-Attention

Fused Self-Attention:

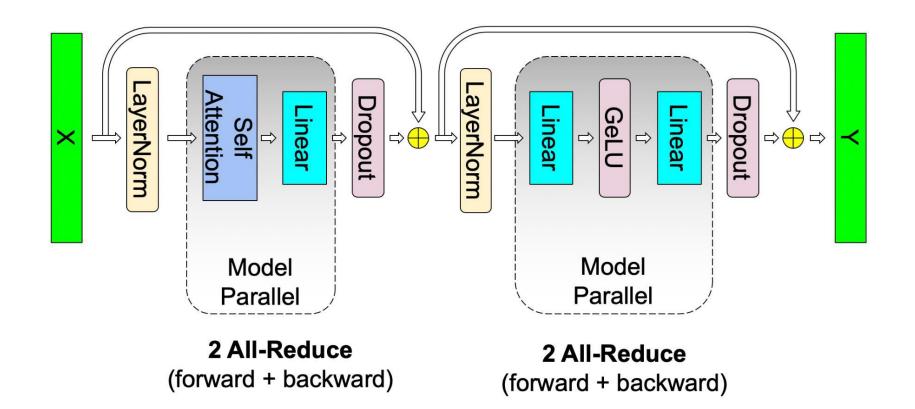




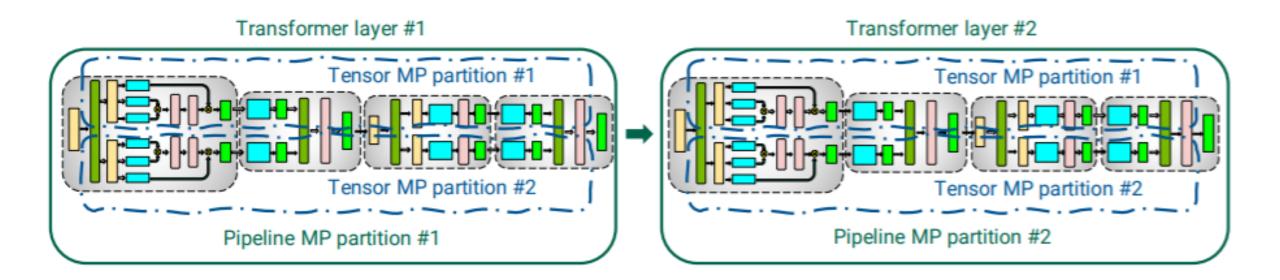
Techtonic 2021

📀 NVIDIA

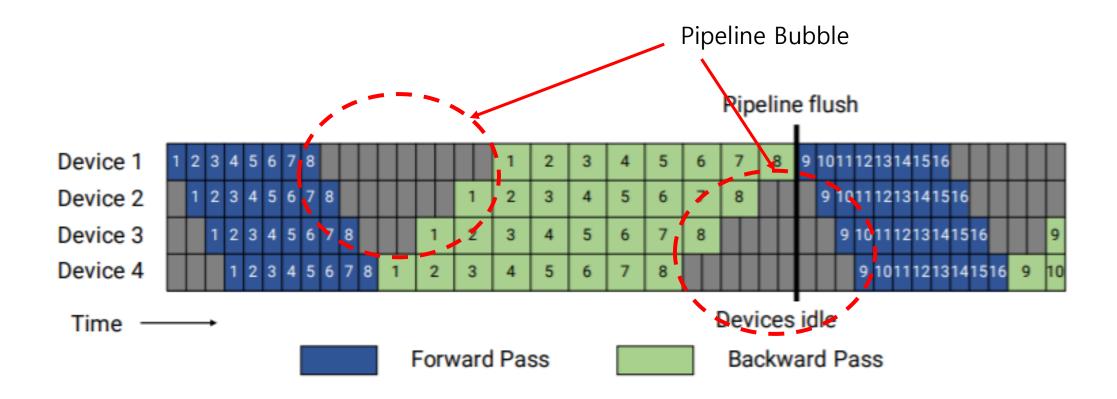
Putting it All Together



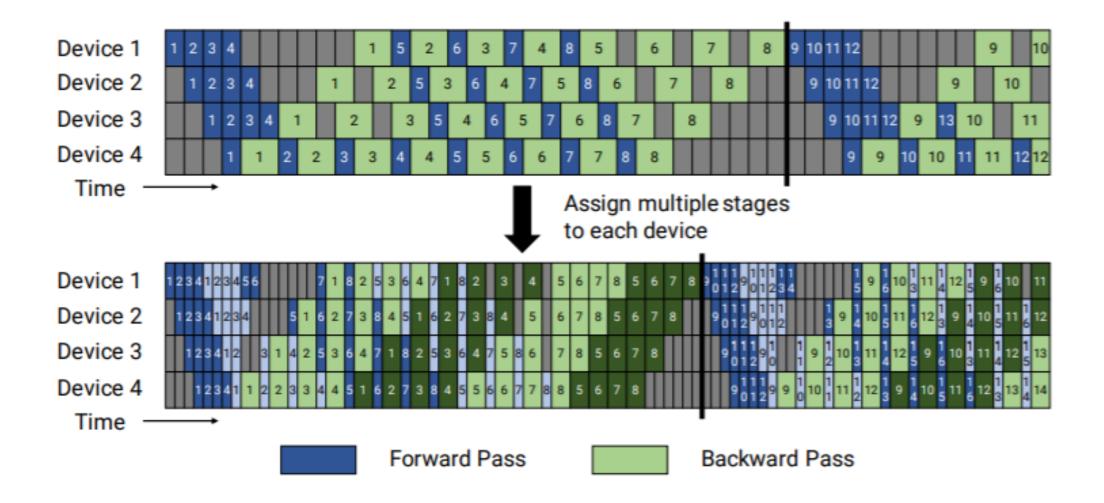
HOW PIPELINE PARALLELISM IS WORKING



HOW PIPELINE PARALLELISM IS WORKING

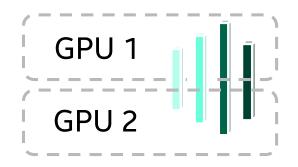


HOW PIPELINE PARALLELISM IS WORKING



TENSOR PARALLELISM VS. PIPELINE PARALLELISM IN GF

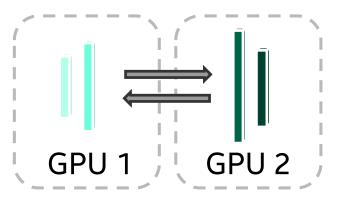
Tensor Parallelism



Communication expensive

Good performance across batch sizes

Pipeline Parallelism

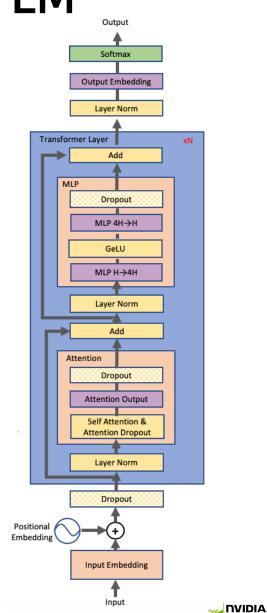


Communication cheap

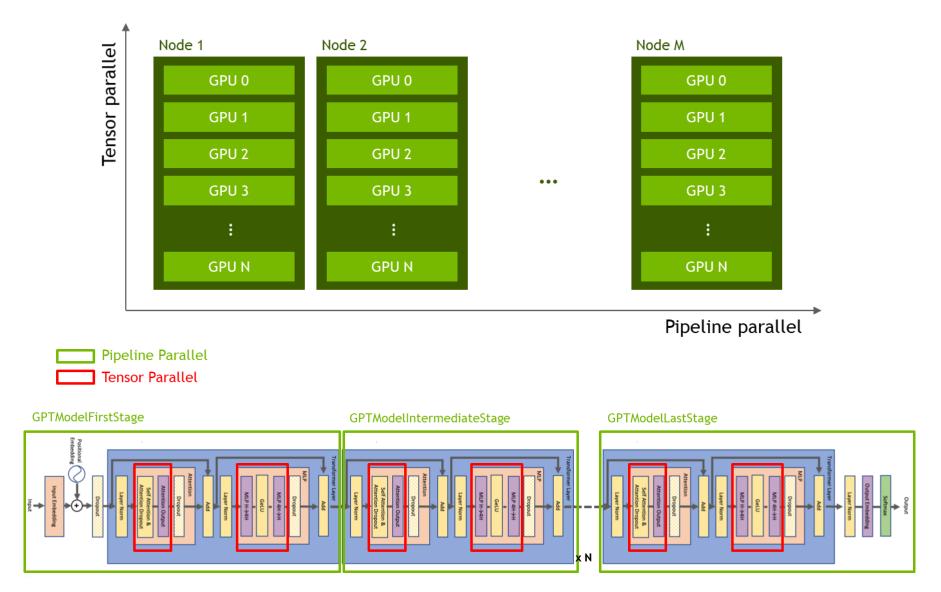
Good performance at larger batch sizes (pipeline stall amortized)

HYPERSCALE LM TRAINING IN MEGATRON-LM

- Model Parallelism: Architecture-dependent NCCL
 - Tensor Parallelism: Intra-node communication using NVLink
 - Pipeline parallelism: Inter-node communication using Infiniband
- Data Parallelism
 - Data Sharding for Reducing Training Time



HYPERSCALE LM TRAINING IN MEGATRON-LM



SCALABILITY IN MEGATRON-LM

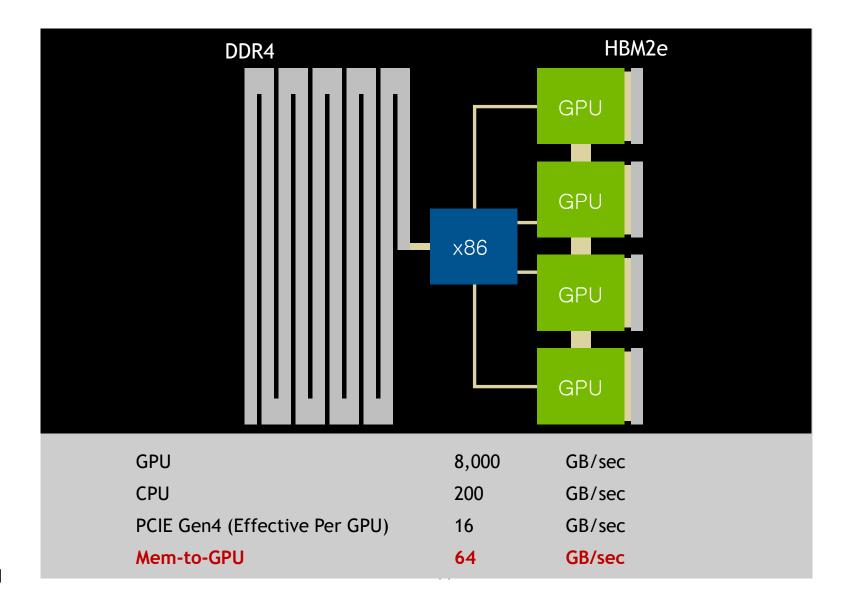
Almost Linear Scaling Efficiency

Model size	Hidden size	Number of layers	Number of parameters (billion)	Model-parallel size	Number of GPUs	Batch size	Achieved teraFIOPs per GPU	Percentage of theoretical peak FLOPs	Achieved aggregate petaFLOPs
1.7B	2304	24	1.7	1	32	512	137	44%	4.4
3.6B	3072	30	3.6	2	64	512	138	44%	8.8
7.5B	4096	36	7.5	4	128	512	142	46%	18.2
18B	6144	40	18.4	8	256	1024	135	43%	34.6
39B	8192	48	39.1	16	512	1536	138	44%	70.8
76B	10240	60	76.1	32	1024	1792	140	45%	143.8
145B	12288	80	145.6	64	1536	2304	148	47%	227.1
310B	16384	96	310.1	128	1920	2160	155	50%	297.4
530B	20480	105	529.6	280	2520	2520	163	52%	410.2
1T	25600	128	1008.0	512	3072	3072	163	52%	502.0

https://github.com/NVIDIA/Megatron-LM

Next-generation Supercomputer Architecture

LIMITS OF EXISTING COMPUTER ARCHITECTURE



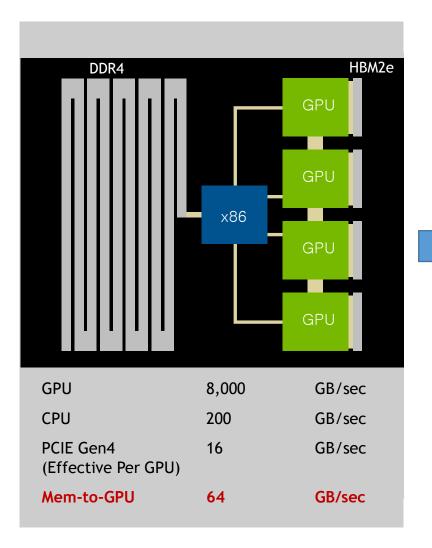
NVIDIA GRACE

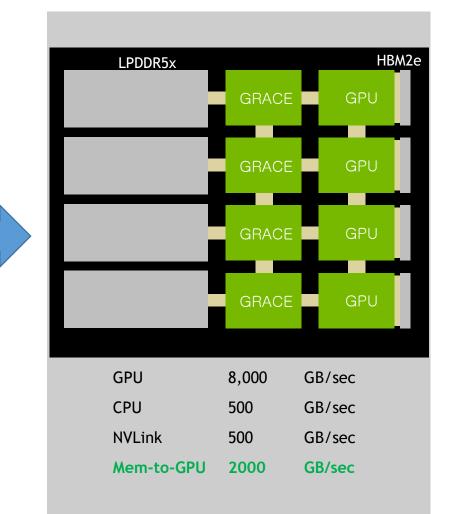
Available in 2023

- ARM for Datacenter CPU
- NVLink between CPU and GPU
- LPDDR5x with ECC

EVOLING DATACENTER COMPUTING ARCHITECTURE

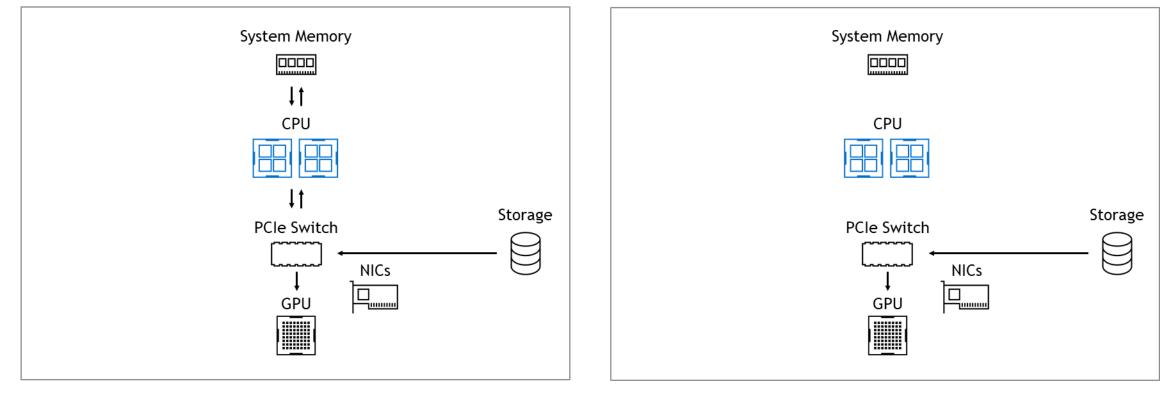
43





GPUDIRECT STORAGE

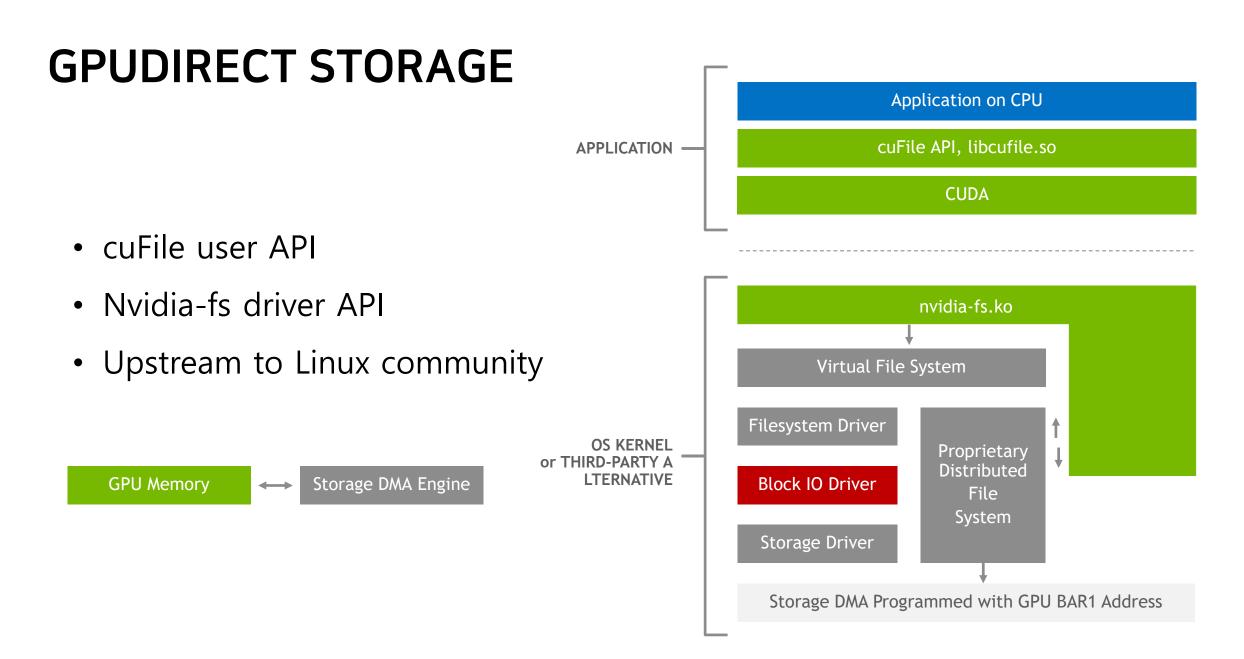
WITHOUT GPUDIRECT STORAGE



Low Bandwidth | High Latency | Limited Capacity

Higher Bandwidth | Lower Latency O(PB) capacity | CUDA programming model

WITH GPUDIRECT STORAGE



REFERENCE

- NVIDIA Megatron: <u>https://github.com/NVIDIA/Megatron-LM</u>
- NVIDIA A100: <u>https://www.nvidia.com/en-us/data-center/a100/</u>
- DGX SuperPOD: <u>https://images.nvidia.com/aem-dam/Solutions/Data-Center/gated-resources</u> /nvidia-dgx-superpod-a100.pdf
- NCCL: <u>https://developer.nvidia.com/nccl</u>
- GPUDirect: <u>https://developer.nvidia.com/gpudirect</u>
- NVIDIA Grace: <u>https://www.nvidia.com/en-us/data-center/grace-cpu/</u>
- MT-NLG: <u>https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megat</u> <u>ron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/</u>
- Microsoft Deepspeed: <u>https://github.com/microsoft/DeepSpeed</u>

Thank you