

Techtonic 2021

Partner

Disrupt

얼굴 인식용 Fuzzy Extractor 활용한 안전한 사용자 인증 기법

Contents

- Motivation
- Fuzzy Extractor
- Problem to be Solved
- Our Solution
- Performance Comparison

Motivations

Cloud environment may cause serious privacy concerns

- Celebrity's private image leakage
- ID/PW-based access control

Private cloud using data encryption/decryption

- Risk in cryptographic key management
- Server: Secret key protection
 Client: Device loss and hard to applicable to MDE

A new solution of data privacy protection in MDE environment

- Real-value based Error Correcting Code
- Fuzzy extractor for biometric-based data encryption

MDE: Multi-Device Environment

Fuzzy Extractor | Concept

- "FuzzyExtractor" outputs the same secret key even though inputs have certain noise
- "FuzzyExtractor" does not store inputs/secret key anywhere

Fuzzy Extractor | Concept

- "FuzzyExtractor" outputs the same secret key even though inputs have certain noise
- "FuzzyExtractor" does not store inputs/secret key anywhere

Fuzzy Extractor | Application

Privacy Enhanced Cloud Environment

"In Multi-device environment, the same secret key is recovered using face-based Fuzzy Extractor"

- 1. Data recovery from face template
- 2. Cloud could not recover owner's data
- 3. Privacy of data is preserved against server hacking

Problem to be Solved | Face Authentication

Deep Learning based Face Authentication

Problem to be Solved | Face Authentication

Security Requirements

- Irreversibility: It is computationally infeasible to recover original biometric data from the protected template.
- Revocability: It is possible to issue new protected templates to replace the compromised one.
- Unlinkability: It is computationally infeasible to retrieve any information from protected templates generated in two different applications.

Problem to be Solved | Error Correction Code

Binary Error Correction Code

Binary Error Correction Code

- Controlling error in binary data over unreliable or noisy comm. channel
- Reed-Solomon Code, Hamming Code etc.

Problem to be Solved | Previous Approach

How to control noisy in face template?

- Applying an error correction code approach
- Binarizing face templates of real value vector

Error correction code approach

- Controlling error in binary data over unreliable or noisy comm. channel
- Reed-Solomon, BCH, Hamming codes etc.

Problem to be Solved | Previous Approach

Problem to be Solved | Previous Approach

How to control noisy in face template?

- Applying an error correction code approach
- Binarizing face templates of real value vector

Error correction code approach

- Controlling error in binary data over unreliable or noisy comm. channel
- Reed-Solomon, BCH, Hamming codes etc.

Error correction

Our Solution | A New Error Correcting Code

Goal

 Design a ECC for hypersphere Sⁿ with the cosine similarity metric

Requirement

- Exponentially many codewords
- Spread the distance between all codewords above a certain level
- Efficient decoding method (finding closest codeword)

Strategy

Specific codeword generation

e.g., C_1 over $S^4 = \{(\pm 1,0,0,0), (0,\pm 1,0,0), (0,0,\pm 1,0), (0,0,0,\pm 1)\}$ C_2 over $S^4 = \{(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0), (\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}, 0), \cdots, (0, 0, -\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})\}$

 Hidden rotation matrix generation

Performance Comparison

Experimental results

- Face recognition: ArcFace (State-of-the-Art)
- Results: Smaller degradation compared to previous works

Dataset	Algorithm	Enrollment Type	Output Type	TAR@FAR
CMU Multi-PIE	[TVN19]	Zero-shot	Binary 255	81.40@1e-2
			Binary 1023	81.20@1e-2
	Ours	Zero-shot	Real 512	98.95@0
		Zero-shot & Center	Real 512	99.96@1.3e-3
FEI	[JCJ19]	One-shot	Binary 256	99.73@0
			Binary 1024	99.85@0
		Multi-Shot	Binary 256	99.84@0
			Binary 1024	99.98@0
	Ours	Zero-shot	Real 512	99.27@0
		Zero-shot & Center	Real 512	99.96@3e-4
Color-Feret	[JCJ19]	One-shot	Binary 256	98.31@0
			Binary 1024	99.13@0
		Multi-Shot	Binary 256	98.69@0
			Binary 1024	99.24@0
	Ours	Zero-shot	Real 512	98.06@0
		Zero-shot & Center	Real 512	99.46@0

[JCJ19] Securing Face Templates using Deep Convolutional Neural Network and Random Projection [TVN19] Zero-Shot Deep Hashing and Neural Network Based Error Correction for Face Template Protection

Thank you