
The Future for Security

1

Greg Morrisett
Jack & Rilla Neafsey Dean & Vice Provost

Cornell Tech

2

GROWTH

▪ 7 in 2013

▪ 500 in 2021

▪ 1000 in 2030

PROGRAMS

Engineering

▪ PhD, M.Eng. in CS

▪ PhD, M.Eng. in ORIE

▪ PhD, M.Eng. in ECE

▪ PhD in Information Science

▪ PhD in Applied Math

Professional

▪ Johnson-Cornell Tech MBA

▪ Tech Law LLM

Jacobs Technion Dual Degrees

▪ M.S. in Connective Media

▪ M.S. in Health Tech

▪ M.S. in Urban Tech

K-12

Making computer science teachable in

NYC public schools:

• 5000+ students, 250+ teachers

engaged

• Creating, researching and

disseminating tools for teaching and

learning

• NYC and national partnerships to

expand scale

BREAK THROUGH TECH

Accelerating gender equality in tech:

▪ 3000+ students engaged in AI and

Computing programs

▪ 100+ industry partners contributing

projects, mentors, and internships

GROWTH

▪ 5 in 2013

▪ 38 in 2021

▪ 80 in 2030

STRENGTHS

▪ AI: ML, Vision, NLP, Robotics

▪ Security & Privacy, DeFi

▪ Mixed & Augmented Reality

▪ Health Tech

▪ Human-Centered Computing

▪ Tech Law, Policy, and Ethics

▪ Faculty joint appointments include

Google, Samsung, UnitedHealth Group,

and Weill Cornell Medicine

STUDIO

▪ 370 companies engaged since

2014

▪ 35 industry practitioners have

taught on campus

SPINOUTS

▪ > 80 startups created,

▪ 95% in NYC

▪ $157M raised (including Cornell

Tech investment)

▪ $500M enterprise valuation

OUR

STUDENTS
OUR

FACULTY

ENTREPRENEURSHIP

& INDUSTRY
BROADENING

PARTICIPATION

Last updated: September 2021

3

All too familiar headlines…

4

Many Things Need Attention

• User interfaces (and users)
• Underlying Architecture
• Mismatch of Abstractions
• Configuration & Operation

But one issue dominates:
The code upon which we depend is full of bugs.

5

What’s Going Wrong?

Development processes are ineffective.
• Human code review doesn’t work.
• Analysis tools have too many false positives.

Certification processes are ineffective.
• Based on who authored, not the code itself.
• A serious threat to the viability of open source.

Automated defenses are worse than ineffective.
• Based on syntax or provenance, not semantics.

6

Ideal Architecture

• Policies capture intended behavior.
• Inspector rules out any code that will violate the policy.
• The inspector is simple, trustworthy, and automatic.

Policy

7

Unfortunately

• It’s hard to formally capture all security requirements.
• Almost all interesting policies are (wildly) undecidable.

Policy

8

Shift the Burden
Policy

9

Formal Methods

Machine-checkable proofs enable a lot:
• Can cover all execution paths in the code.
• Can make it easier to modify code with confidence.
• Don’t need to care who produced the code/proof.

But this is an old idea. What’s changed?

10

Formal Methods Today

• Languages, frameworks, & logics for reasoning about code.
• Coq, Agda, Isabelle, F*, etc.
• Concurrent separation logic

• Formal models of real systems
• Machines: x86, Arm, etc.
• Languages: C, Javascript, etc.

• Proof automation: SAT & SMT solvers
• Multiple orders of magnitude improvement over 20 years

11

Some Examples

• Compilers: Inria’s CompCert
• Operating Systems: NICTA’s seL4
• Crypto: Microsoft’s Everest
• Networking: Amazon’s Access Analyzer
• Hardware: MIT’s Kami

12

High Assurance Cyber-Military Systems (HACMS)

An Example Success Story

13

• Clean slate software stack
• Stability control, altitude hold, direction hold, DOS

detection & response

• GPS waypoint navigation (80%)

• Proved system-wide properties
• System is memory safe

• System ignores mal-formed messages

• System ignores non-authenticated messages

• All “good” messages will reach the controller

HACMS 18-month Program

14

A red team was given full access to the source code for
six weeks and told to break it.

They weren’t able to.

HACMS Evaluation

15

Recent Amazon CTO
keynote: ~15mins on
formal verification

16

• Formalizing security policies

• Constructing & validating environment models

• Deeper automation in theorem proving

• Architectures for reducing proof burden

• Training

Many Challenges

17

• Formalizing security policies
• Crypto world is surprisingly informal, mix assumptions
• What’s the ”correctness” requirement for a browser?
• What’s the policy for an ML-based system?

• Constructing & validating environment models

• Deeper automation in theorem proving

• Architectures for reducing proof burden

• Training

Many Challenges

18

• Formalizing security policies

• Constructing & validating environment models
• For example, a CPU or network card or firewall?
• How do we test these models?
• What level of abstraction (e.g., Spectre/Rowhammer?)

• Deeper automation in theorem proving

• Architectures for reducing proof burden

• Training

Many Challenges

19

• Formalizing security policies

• Constructing & validating environment models

• Deeper automation in theorem proving
• seL4 took 20 person-years to prove secure
• SMT only handles quantifier-free fragment
• Not yet taking full advantage of cluster-scale compute
• Can ML be applied to synthesizing proofs?

• Architectures for reducing proof burden

• Training

Many Challenges

20

• Formalizing security policies

• Constructing & validating environment models

• Deeper automation in theorem proving

• Architectures for reducing proof burden
• Encapsulate and test (e.g., register allocator)
• Compositional abstractions (e.g., CerticOS)
• Reusable libraries/models

• Training

Many Challenges

21

• Formalizing security policies

• Constructing & validating environment models

• Deeper automation in theorem proving

• Architectures for reducing proof burden

• Training: need proof engineering
• Constructing & maintaining proofs is still hard work
• Few universities teach this well
• We need a new field of proof engineering!

Many Challenges

22

Only the Beginning

Formal methods can help with the code
bugs, but fundamentally leaves these hard
problems:
• User interfaces (and users)
• Underlying Architecture
• Mismatch of Abstractions
• Configuration & Operation

