
SAMSUNG Best Paper Award 2019

Multi-batch Scheduling for Improving Performance of
Hyperledger Fabric based IoT Applications

Hyojung Lee, Changsuk Yoon, Kyusang Lee, Sangji Bae,
Sangwon Lee, Sangjun Kang, Kiwoon Sung, and Seungjai Min

(Abstract) Blockchain technology has been regarded as a paradigm that enables enterprises to deploy decentralized Internet of things
(IoT) applications, which require security, mutual truthfulness, privacy, and data reliability. However, the adoption of blockchain
technology on IoT applications has been limited due to the lack of blockchain’s capability to process a huge amount of transaction
requests from IoT devices. In this paper, we propose a new transaction processing mechanism, called Accelerator, which improves
the performance of blockchain-based IoT applications in terms of transaction throughput and latency. Two key design ideas of
Accelerator lie in: (i) independent modular structure that can be implemented without changing the incumbent blockchain network
and (ii) adaptive multi-batch scheduling engine for robust performance. We first provide a mathematical analysis that is used
to choose the parameters of Accelerator to maximize the performance. Moreover, we implement Accelerator on a decentralized
blockchain network using Hyperledger Fabric and perform the extensive test using Hyperledger Caliper. We show that Accelerator
achieves 8x transaction throughput improvement without sacrificing latency.

1. INTRODUCTION

1.1. Motivation

With the widespread adoption of blockchain technology,
which comes from Bitcoin’s architecture [1], a number of de-
centralized applications based on blockchain have arisen. One
of the promising usage of blockchain is to adopt Internet of
Things (IoT), where the IoT applications require to guarantee
security, mutual truthfulness, privacy, and data reliability with-
out a traditional centralizer. The viability of such blockchain-
based IoT applications has been actively investigated in recent
years, as described in [2, 3, 4, 5, 6, 7, 8]. However, the lack
of blockchain’s capability caused by time-consuming consen-
sus process still remains as a limitation of the adoption of
blockchain on IoT applications. Moreover, IoT applications
have various patterns on generating requests, where some
applications might request over thousands of transactions per
second (TPS).

The main interest of this paper lies in providing an adaptive
structure to enhance the performance of blockchain-based IoT
applications. After Bitcoin, a number of new blockchain tech-
nologies are emerged [9, 10, 11], aiming at improving trans-
action throughput by redesigning the consensus algorithm.
However, the consensus algorithms have inherent structural
challenges in achieving high transaction throughput, since it
should fulfill blockchain’s promise such as security and im-
mutability. In this paper, we design a new transaction pro-
cessing engine, called Accelerator, which highly improves the
transaction throughput of blockchain without any change of
the blockchain’s consensus algorithm. To this end, we develop
the adaptive multi-batch scheduling engine that classifies and
aggregates the submitted transactions as batched transactions.

1.2. Main Contribution

As the first step of our approach, we adapt Accelerator to
the Hyperledger Fabric [11], which is one of popular permis-
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Fig. 1. Overall structure of Accelerator

sioned blockchain technology and being studied in depth [12,
13, 14]. To take full advantage of Hyperledger Fabric, two
key design features of Accelerator are summarized in what
follows:

(a) Independent and modular structure. Accelerator has an
independent and modular structure, thus is implemented
as a form of intermediary running between the clients
and the blockchain network as depicted in Fig. 1. Such a
feature is suitable for adopting IoT applications, since IoT
devices may not have enough computing power to run an
additional process for improving blockchain performance.

(b) Adaptive multi-batch scheduling engine. Accelerator pro-
vides a simple, but powerful transaction processing algo-
rithm inspired by batch scheduling. Accelerator classifies
the incoming transactions into the transaction processing
policy of Fabric and subsequently makes a batched trans-
action. To this end, Accelerator is carefully designed to
choose the adaptive batch size, depending on the charac-
teristic of requested transactions and remaining computa-
tional resource of blockchain network.

We first provide a rigorous mathematical analysis to choose
the parameters of Accelerator. Subsequently, an extensive per-
formance evaluation is conducted to understand the impact of
Accelerator on the performance on Fabric network. Moreover,
we use Hyperledger Caliper [15], which is a test harness
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Fig. 2. Transaction flow of Hyperledger Fabric

provided by Hyperledger, applying some modifications in or-
der to make proper simulation scenarios for IoT applications.
Finally, we conclude that Accelerator enables Hyperledger
Fabric based IoT applications to finalize more than 12,000
transactions per second, which achieves 8x improvement com-
pared to the pure Hyperledger Fabric network.

1.3. Related Work

In this paper, we consider a blockchain network based on
Hyperledger Fabric, which is suitable to show the performance
improvement by Accelerator due to a modular consensus pro-
cess. The related work on the performance of Hyperledger
Fabric includes [12, 13, 14]. The authors in [12] study how
the configuration parameters impact on its performance and
find out where the bottleneck is. The paper [13] also contains
the results from adjusting parameters of Fabric and further
optimizing on the data structure for efficient usage of hash
table. The authors [14] suggest a performance model using
stochastic reward nets, and provide performance evaluation
results of Fabric. Our work also studies and improves the
performance of Fabric, however, we do not change any part
of Fabric but provide an additional independent module, Ac-
celerator, which is inspired by batch scheduling. Accelerator
has a pluggable physical structure as well as is able to choose
adaptive parameters according to the remaining computing
resource of participants on Fabric.

The related work on blockchain-based IoT applications in-
cludes [2, 3, 4, 5, 6, 7, 8, 16, 17]. The papers in [2, 3, 4]
introduce the various usage of blockchain technology on IoT
as well as the challenges and the opportunities. In [5], the au-
thors implement Ethereum-based network among IoT devices
and show how to manage them using smart contract. The
papers [6, 7, 8] introduce a design of IoT networks based on
Hyperledger Fabric. The authors [6] demonstrate the appli-
cability of Fabric to IoT applications and data management
that aims at providing end-to-end trustiness. The paper [7]
and [8] propose hierarchical architectures for securing sen-
sor data acquisition and edge computing, respectively. But,

these works differ from ours in that they focus on how to
implement a blockchain-based IoT application rather than its
performance. To the best of our knowledge, this paper is the
first that studies the performance improvement of blockchain-
based IoT applications.

Organization. The rest of this paper is organized as follows.
Section 2 presents a brief introduction of Hyperledger Fabric.
In Section 3 and Section 4, we describe how is Accelerator
designed combining with the incumbent Hyperledger Fabric
network, and show its impacts on the Fabric by extensive
performance evaluations, respectively. In Section 5, we finally
conclude the paper.

2. BACKGROUND: HYPERLEDGER FABRIC

Fabric is one of open-source Hyperledger project hosted by
the Linux Foundation. Since the detailed description of Fabric
is in [18], here we provide brief explanations to understand
how Accelerator runs with Fabric.

Chaincode, ledger and state. Chaincode, which corresponds
to smart contracts of other blockchain technologies such as
Ethereum [9] and Corda [10], refers to a program code con-
taining functions that can be executed by some peers when
a client submits a transaction proposal. Ledger is an append-
only data structure where all transactions are recorded in a
hashed chain. State is a concise form of the latest ledger
written in a versioned key-value store.

Clients, peers and orderers. Transaction proposals are gener-
ated by clients and delivered to selected peers, referred to as
endorsers or endorsing peers, specified by the endorsement
policy of a chaincode. All peers validate transactions as well
as maintain the blockchain ledger and the state at the latest
version. Orderers altogether determine the order of all trans-
actions and make a block. After the ordering, the orderers
send the block to all peers for validation.

Transaction flow. The consensus of transactions in Fabric is
established by execute-order-validate architecture as shown in
Fig. 2.
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Fig. 3. Architecture of Accelerator

◦ Execution: A client submits a transaction proposal to en-
dorsers for the proposal execution. After the execution, each
of the endorsers sends back a proposal response, called en-
dorsement, that is cryptographically signed and includes a
writeset consisting of key-value updates, which is a result
of the execution, and a readset containing the versioned keys
read in the execution.

◦ Ordering: When the endorsements are sent back to the
submitting client, the client submits the transaction with its
endorsements to orderers. Then, the orderers decide the order
of all transactions and place them into blocks according to its
policy, e.g., the maximum number of transactions and timeout.
The generated blocks are delivered to all peers.

◦ Validation: When a peer receives a block, the peer verifies
the endorsement of each transaction within the block. If the
policy is satisfied, the peer sequentially checks whether the
readset version of each transaction is valid against current
state or not. After validation, the block is appended to the
ledger and the state is updated. The submitting client can
receive an event about the appended block from peers so that
the client can confirm whether the submitted transaction has
been committed.

3. ACCELERATOR DESIGN

In this section, we present our software module, Acceler-
ator, for enhancing the consensus process of blockchain. We
start by an overview of Accelerator architecture.

3.1. Overview

Overall structure of blockchain network. Accelerator is a
transaction scheduling module that is placed between clients
and Fabric network as depicted in Fig. 3. Note that Fabric
network is composed of the nodes for establishing consensus,
e.g., endorsers, orderers, and peers. Accelerator communicates
with the nodes and the clients where all connections can
be established in wired/wireless manners. To focus on the
performance of blockchain with Accelerator, we assume that

the network throughput is large enough thus the transmission
delay is negligible.
Accelerator architecture. When the transactions are submitted
by clients, Accelerator decides how aggressively the transac-
tions should be batched in an endorsement-dependent man-
ner. To this end, the transactions are classified according to
the chaincode and its endorsement policy and sequentially
enqueued into Adaptive Batch Queue (ABQ). The classified
transactions in ABQ are regulated by Multi-batch Scheduling
Engine (MSE), which is composed of Adaptive Batch Control
(ABC) and Validation Bypass Preventer (VBP). ABC is a key
component determining the aggressiveness of batch schedul-
ing, controls how many transactions in ABQ are grouped as
a batch as well as when to dequeue the Batched Transaction
(BTX) proposal. ABC determines the size of BTX depend-
ing on the Fabric network responses, e.g., the BTX proposal
response and the validation response. In brief, the classified
transactions in the same ABQ are grouped as a BTX according
to ABC, and the BTX is sequentially delivered to endorsers at
once. Moreover, ABC is regulated by VBP to avoid a bypass
of the validation procedure.
Batched transaction flow with Accelerator. Fig. 4 depicts a
simple example of BTX flow with Accelerator. As we ex-
plained, Accelerator acts as an intermediary between Fabric
network composed of nodes (e.g., endorser, orderer, and peer)
and clients. On behalf of clients, Accelerator submits BTX
proposal made of the transaction requests from clients to Fab-
ric network. We introduce two key features of Accelerator
in order to accomplish the successful BTXs’ commitment to
Fabric.
◦ Execution of BTX with chaincode-agnostic module: Even
though Accelerator submits the transactions as a form of batch,
the individual transactions should be executed separately by
each chaincode. Therefore, we develop a chaincode-agnostic
module that decomposes a BTX to its original transactions
and returns the total results as an endorsement. This module
can be implemented in any chaincode running on Fabric.
◦ Validation bypass preventer (VBP): Without VBP, using
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Fig. 4. Simple example of BTX flow with Accelerator

Accelerator may cause a problem that Fabric cannot detect a
validation failure resulted in disordered transaction proposals.
Therefore, VBP solves such a non-detection problem by pre-
venting transactions disordering before endorsing. By regulat-
ing ABC, VBP forces a BTX not to include the transactions
that try to update (i.e., write and read) the same keys. The
detailed algorithm of VBP is described in Section 3-3.

3.2. Performance of Blockchain Network with Accelerator

In this subsection, we introduce how we define the perfor-
mance of Accelerator based on Fabric network in terms of
transaction throughput and transaction latency.

Transaction throughput. A blockchain network’s transaction
throughput, simply throughput, is defined as the maximum
number of successful transactions per second, where a trans-
action is regarded as successful when it establishes consensus
so that it is committed to the ledger. The throughput depends
on the complexity of consensus procedure and the computing
power of Fabric nodes (i.e., endorsers, orderers, and peers).
We denote by µq(βq) the throughput of transactions classified
in ABQ q ∈ Q, where we let Q be a set of ABQ and the batch
size of BTX is defined as βq. The batch size βq is assumed
to be a natural number, i.e., βq ∈ N.
Transaction latency. A transaction’s latency, simply latency,
is defined as the sojourn time of a transaction at the blockchain
network. The latency is the sum of the transmission delay at
the network links between nodes, the transaction computing
delay at each node, and the queueing delay which occurs
the batching processes at ABQ generating BTX as well as
the orderers making a block. However, the transmission delay
and the transaction computing delay are negligible compared
to the queueing delay, thus we assume that the transaction
latency is equal to the queueing delay. We denote by ωq(βq)
the average latency of transactions classified in ABQ q ∈ Q,
where the batch size of BTX is βq.

Performance of Accelerator. Denote fq(θq, µq(βq), ωq(βq))
be the performance of ABQ q ∈ Q, where θq ∈ [0, 1] refers to
the heterogeneous preference of the transactions dedicated in
an ABQ q ∈ Q on the high transaction throughput rather than
the low latency. For example, if θq = 1, then fq(·) = µq(βq)

and if θq = 0, then fq(·) = ωq(βq). The value of θq depends
on the characteristic of transactions in the ABQ q.

3.3. Multi-Batch Scheduling Engine of Accelerator

We aim at understanding how to control ABC and VBP,
which are the key components of MSE, determining the adap-
tive batch size to maximize the performance of Accelerator.

Multi-Batch Scheduling Engine of Accelerator

Adaptive batch controller (ABC). ABC mainly controls how
many transactions in each ABQ are grouped as a BTX, and
when to dequeue the BTX proposal to endorsers. ABC de-
termines the maximum batch size β̄q for an ABQ q ∈ Q, to
maximize the blockchain performance, i.e.,

β̄q = arg max
βq∈N

fq(θq, µq(βq), ωq(βq)), ∀q ∈ Q,

where θq is given. Moreover, to avoid an excessive queueing
delay at the ABQ, we set the maximum waiting time τq.
Then, the upper bound of batch size becomes bτqλqc, where
the average transaction arrival rate at q is denoted by λq.
Consequently, we define the optimal batch size β?q for the
ABQ q ∈ Q as follows:

β?q = min
(
β̄q, bτqλqc

)
, ∀q ∈ Q. (1)

Note that β?q is adaptively determined by the values µq, ωq
and λq, which are observed by MSE.

Validation bypass preventer (VBP). VBP ensures the cor-
rectness of ABC. If the b-th incoming transaction into ABQ
q ∈ Q causes a readset version conflict with transactions in
the ABQ q, then VBP forces ABC to immediately generate
a BTX with all existing transactions in the ABQ except the
b-th transaction, i.e., β?q = b− 1.

3.4. Rationale of Accelerator

We now present a rationale of Accelerator. The main contri-
bution of Accelerator is to determine how to choose the batch
size βq using ABC, as shown in equation (1). The consensus
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Fig. 5. Impact of Accelerator on throughput and latency

procedure of Fabric, which is established by execute-order-
validation architecture, has been performed for every single
transaction. However, we focus on the fact that a set of trans-
actions using the same chaincode under the same endorsement
policy is sequentially executable, moreover, can be crypto-
graphically signed at once. Therefore, we design the ABQ,
which is assigned to such a set of transactions, controlled by
ABC and VBP. This simple, yet powerful idea of Accelerator
helps a lot to improve the transaction throughput of Fabric,
since the computing power consumption caused by crypto-
graphic operations during endorsement/validation phases are
in proportion to the number of transactions. Therefore, Accel-
erator can significantly reduce the computing delay of each
node in Fabric by submitting BTX proposals rather than in-
dividual transaction proposals.

The ultimate goal of Accelerator lies in maximizing the per-
formance of blockchain ledger by adjusting the batch size. The
batch size βq of ABQ q ∈ Q is a crucial factor that trades off
the transaction throughput and the queueing latency in each
ABQ. For example, if βq grows, each peer (either endorser
or not endorsing peer) consumes less computing power per a
single transaction so that the total transaction throughput of
blockchain network is augmented, but the queueing delay in-
creases at the ABQ q ∈ Q. Therefore, we suitably choose the
parameter βq , which depends on the preference on throughput
or that on latency of the grouped transactions in the same
ABQ q ∈ Q. In this paper, we design the performance fq(·)
of an ABQ q ∈ Q as follows:

fq(θq, βq) = θqµq(βq)− (1− θq)ωq(βq),∀q ∈ Q, (2)

where we remind that µq(βq) and ωq(βq) are the throughput
and the latency, and θq ∈ [0, 1] refers to the heterogeneous
preference of the transactions in an ABQ q. The function
fq(·) models how the performance of Accelerator reflects the
tradeoff between throughput and latency as a concavity with
respect to the batch size βq. To this end, we assume that fq(·)
linearly increases with µq(βq) but decreases with ωq(βq),
in order to take a balanced weight between throughput and
latency, where the throughput µq(βq) increases with βq due to
saving computing power of each peer while the latency ωq(βq)
increases in proportion to the size of βq. In the following

section, we provide extensive evaluation results that reveal the
impact of Accelerator on the performance of Fabric network.

4. PERFORMANCE EVALUATION

Our performance evaluation aims at understanding (i) how
the nodes in Fabric network actually work for transaction
flow and (ii) how to attain the controllability on Fabric’s
performance using Accelerator.

4.1. Implementation, Test scenarios, and Measurements

Implementation. For the evaluation, we first construct a Fab-
ric network with version 1.4, which is composed of three
peers, one endorser, and one orderer 1. We use Hyplerledger
Caliper [15], which is a test harness provided by Hyperledger,
applying some modifications in order to make proper simula-
tion scenarios for IoT applications. We exploit two Calipers,
each of which is composed of eight clients who randomly
generate a massive amount of transactions. Accelerator is im-
plemented as a stand-alone server that mediates the Calipers
and Fabric network using gRPC call [20]. Each node, each
Caliper, and Accelerator run on the x86 64 virtual machines
in a Samsung SDS cloud, where each virtual machine is allo-
cated 8 vCPUs of Intel Xeon CPU E5-2690 v4 @ 2.60 GHz
and 32 GB of memory. Moreover, all nodes are communicated
with 2 Gbps network.

Test scenarios. As we mentioned, we modified the Caliper
to evaluate Accelerator in order to make a virtual simulation
case where a lot of transactions using IoT applications are ran-
domly generated. We assume that the transaction proposals are
independently submitted and follow the Poisson process, in
which the inter-arrival time between transactions is a random
variable following the exponential distribution with parame-
ter λq. We exploit the open function in a simple chaincode
provided by the Caliper. Evaluations are conducted in two

1In detail, we assume that a single organization with a single channel
where the peers, the endorser, and the orderer exist. We use solo type orderer
with block size ten. Due to the space limitation, we did not mention a part
of Fabric structure such as organization and channel, but we believe that it
does not disrupt understanding the feature of Accelerator. We provide the
evaluation environment in Nexledger Accelerator github [19].
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Fig. 6. Impact of Accelerator on throughput and latency

scenarios. One is a plain scenario using open function that
operates read and write once, and another is a modified open
that repeats read operation three or ten times and write once.
Under those scenarios, we perform extensive simulations to
know how to choose the batch size for the best performance
of blockchain-based IoT applications. Moreover, to focus on
the impact of batch size, we consider the cases where the
transactions have non-conflicted key-value pairs to avoid the
key duplications and the invalidations.

Measurements. We carefully deploy the measurement module
on Accelerator, which aims at understanding the impacts on
the detailed transaction flow. By doing so, we can operate
ABC and VBP properly. First, we measure all transaction
input/output rates passing through Accelerator as shown in
Fig. 4. The rate T1 is from Caliper to Accelerator, T2 is from
Accelerator to endorser, T3 is from endorsers to Accelerator,
T4 is from Accelerator to orderer, and T5 is from validating
peer to Accelerator. The transaction rates T1-T4 are used as a
proof of sound transaction flow and the final output transaction
rate from Fabric network T5, shortly output transaction rate,
is used for finding the throughput of ABQ q ∈ Q. Moreover,
the latency ωq(βq) is observed at a cyclic path through Accel-
erator from the transaction request to the transaction response
at Caliper. Additionally, we measure the endorsing latency L2

which occurs during endorsement procedure.

4.2. Two-regimes: non-overloaded and overloaded

Before we study how to improve the performance of Fabric
by Accelerator determining βq, we first focus on the impact
of increasing transaction arrival rate on the output transaction
rate and the latency on Fabric network. Fig. 5(a) and Fig. 5(b)
depict how the output transaction rate and the latency change
with the transaction proposal arrival, λq, when βq = 1 and
βq = 20, respectively. The behavior of Fabric is divided into
two regimes. One regime is the non-overloaded regime, which
occurs if the throughput is larger than the transaction arrival
rate, i.e., λq < µq(βq). Under the non-overloaded regime, the
output transaction rate of Fabric increases with the arrival rate
until the following condition is met:

λq = µq(βq).

Therefore, we can empirically find µq(βq). For example, we
observed that µq(1) ≈ 1, 500 TPS and µq(20) ≈ 12, 000
TPS, as depicted in Fig. 5(a) and Fig. 5(b). Also, if the
transaction arrival rate grows over the throughput, i.e., λq >
µq(βq), Fabric network goes to the overloaded regime, then
the submitted transactions might not be finalized. Fig. 5(a)
also illustrates the latency ωq(βq). The latency under the non-
overloaded regime decreases with the arrival transaction rate
due to the decrease of queueing delay at ABQ q while the
latency infinitely increases due to the growing queue under
the overloaded regime.
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Fig. 7. Impact of Accelerator on throughput and latency with multi-transaction requests

4.3. Impacts of Accelerator on Fabric network

Impacts of Accelerator and batch size decision. Fig. 5(c)
describes how Accelerator impacts on the throughput µq(βq)
and the minimum latency for each fixed batch size βq . We can
find the value of µq(βq) at the point satisfying λq = µq(βq).
As the batch size βq grows, the throughput is logarithmi-
cally increasing while the latency is linearly increasing. In
other words, µq(βq) and ωq(βq) tend to be a logarithmi-
cally increasing function and a linearly increasing function,
respectively. This phenomenon is very important not only to
understand the behavior of Accelerator but also to determine
the optimal batch size βq. For example, if we assume that the
performance function is simply defined as follows:

fq(θq, βq) = θq log βq + (1− θq)(−βq),

then the fq(θq, βq) is a concave function with respect to βq,
thus we can find that β?q =

θq
1−θq at the point where the first

derivative becomes zero. Then, β?q is an increasing function
with respect to θq ∈ [0, 1]. This result is quite reasonable
since it shows that a set of transactions who prefers a high
throughput, i.e, high θq , tends to choose a large batch size βq.
In the following evaluations, we investigate the reason why
µq(βq) and ωq(βq) make such behaviors.

Impacts on throughput of each transaction flow. We now
study which step becomes a bottleneck throughout the trans-
action flow with increasing transaction arrival rate and how
Accelerator impacts on the bottleneck. Fig. 6(a) describes the
transaction rates T1-T5 with respect to various transaction ar-
rival rate λq, when βq = 1. Under the non-overloaded regime,

e.g., λq = 1, 000 TPS, there is no bottleneck phase thus the
transaction rates T1-T5 are equivalent to each other, because
the computing power of each peer is enough to perform all
transactions’ consensus processes. When the Fabric network
goes to the overloaded regime, e.g., λq = 3, 000 TPS, the final
output transaction rate T5 decreases, it means that the vali-
dation procedure becomes a bottleneck. Furthermore, if λq ≥
6, 000 TPS, T5 severely falls, moreover, the transaction rate
T3 also decreases due to the lack of computing resource for
endorsement. Such throughput degradation of Fabric network
occurs because an endorsing peer suffers a lack of computing
power since it conducts both endorsement (as an endorser)
and validation (as a peer). Interestingly, Fig. 6(b), which il-
lustrates the output transaction rates when βq = 10, shows
that the batch scheduling solves the throughput loss during
the endorsement (see T3-T4). Therefore, we can conclude that
the lack of computing power remains at the ordering and
validation phase even though we adopt Accelerator, which
causes the diminishing increase of throughput with respect to
βq, as shown in Fig. 5(c).

Impacts on latency. Fig. 6(c) and Fig. 6(d) respectively depict
the endorsing latency and the latency of transactions in an
ABQ q ∈ Q, with respect to the batch size βq. Overall,
the latency increases as the growth of batch size βq, due to
the queueing latency at the ABQ. However, if the transaction
input is high (e.g., λq ≥ 2, 000 TPS), the Fabric network
may fall into the overloaded regime with the small batch size
(e.g., βq ≤ 4), where the queueing latency infinitely grows.
Otherwise, under the non-overloaded regime, a transaction
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having a higher transaction arrival rate has a lower latency
when batch size is fixed.

Impacts of chaincode. Fig. 6(e) and Fig. 6(f) shows the im-
pact of chaincode function on the performance improvement
by Accelerator. We compare two simulation scenarios as fol-
lows: (i) using open function and (ii) using modified open
function, which are explained in Section 4-1. We can achieve
more improvement in the throughput and less increase on
the latency when we use the open function. This stands for
the suitability of Accelerator on the IoT applications which
generate a massive number of simply executable transactions.

Impacts of Accelerator on multi-transaction requests. Fig. 7
shows the impacts of Accelerator on throughput and latency
when the transactions are requested from multiple types of
chaincode functions. Transactions are generated by two Calipers
that can request the open function or the modified open with
ten times read operations. Fig. 7(a) and Fig. 7(d) illustrate the
case where two Calipers generate open function requests only.
With Accelerator, as shown in Fig. 7(d), the Fabric network
achieves 7-8 times higher throughput than the cases with-
out Accelerator in Fig. 7(a). Compared to the single Caliper
case in Fig. 5(b), the Accelerator works well and achieves
high improvement on throughput. Fig. 7(b) and Fig. 7(e) de-
pict the case where one Caliper generates open function re-
quests and the other generates modified open function re-
quests. Moreover, Fig. 7(c) and Fig. 7(f) show the case where
all Calipers generate modified open function requests only.
In those cases, the throughput improvement by Accelerator
decreases as shown in Fig. 7(e) and Fig. 7(f). Therefore, the
performance enhancement of Fabric using Accelerator under
multi-chaincode case would be our main future work.

5. CONCLUSION

In this paper, we developed a new scheduling algorithm,
called Accelerator, which improves the transaction throughput
of Hyperledger Fabric based IoT applications. Using adaptive
multi-batched scheduling method, we resolved a chronical
problem of blockchain technology, which is an insufficient
transaction throughput, without compromising the integrity of
consensus algorithm of blockchain networks. Moreover, ac-
cording to the type of transaction, Accelerator can adaptively
determine the batch size, which is a crucial factor that trades
off the transaction throughput and the queueing latency. This
simple but powerful idea enables Fabric-based IoT application
to finalize more than 12,000 transactions per second, which
achieves 8x improvement compared to the pure Fabric net-
work.
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