

Service
Meshes only
for

Microservices?

• We often find service meshes being
discussed alongside
microservices. So much so that one
could reasonably feel that
they are synonymous with each other.

• As a result, some may presume that
unless you're deploying
microservices you have no need for
service meshes and this
may be an improper conclusion.

Why Do We Feel This Way?

• Let's see what led up to this conclusion.

• Let's start with our understanding of
Microservices

Microservices Defined

Microservices are somewhat ambiguously defined. Wikipedia lists a
set of properties that are commonly found in a microservice:

• Communicate over the network (often leveraging the http protocol)

• Independently deployable

• Organized around capabilities

• Written in languages or techniques that best fit the problem being solved

• “Small” in scope

Microservices Are Just Services

Arguably most services fall into this microservice category if you are looking from a 30,000 foot
view, as everything at that perspective is “small”

But we generally accept that most legacy services are not microservices - so there must be more
to it.

There is a certain je ne sais quoi to identifying a microservice, but you'll find that
they often have some gaps:

• In order to stay small, Microservices tend to focus only at the task at hand, deferring boring
things like security, rate limiting, identity, etc. to something else

• Microservices tend to have to connect to other microservices, thus concepts of service
discovery become important

Service Meshes
Solve
Microservices’
Problems

• Why do we see service meshes together
with microservices?
• They often solve these boring problems for

microservices!

• Quite possibly, service meshes can solve
these boring problems for their bigger
friends, generic applications/services too!

So what is a service mesh?

Good News

343 Million results in google for

"service mesh“

Bad News

2 sentences in Wikipedia

Result

Service Mesh is not very well

defined but a focus of attention

for many individuals and

organizations

Service meshes are
principally concerned
about how to
consume services

• End-User to Service

• Service to Service

Service Meshes
are not about
how to run a
service

Augments rather than replaces

VMware OpenStack Kubernetes

Does not make decisions about scaling

a service, but can provide insight

Not an infrastructure provider

Provide Network connectivity services

Rate Limiting Coordination of load

balancing

Layer 7 routing

decisions (for

HTTP/HTTPS)

Augment Authentication and
Authorization Infrastructure

Service to Service Identity Original Requester (Principal) to

Service Identity

Integrate into existing Identity

providers (consume JWTs, TLS

certs, etc.)

Provide Security Controls

Permission to access a service

or component of a service

Ingress/Egress identification

and control

TLS on every level

Network Normalization

Service

Discovery

Multiple Data

Centers

Multiple Clusters Hybrid

Environments

Observation Services

Logs Distributed Tracing Usage Metrics

Chaos Engineering Support

Simulate Failures Simulate Delays

Lots of
Features, But
Consistent
Themes

• Service meshes are providing "boring"
services that some applications may or
may not have

• If they have, they may not be done
using best practices

• Help services be consumed by other
services or end users

• Not concerned how something is run:

• Bare Metal vs VMs

• Containerized deployments vs
traditional deployments

Service Meshes are Useful to (Micro)Services

• We can easily see this helps streamline
microservice development lifecycle.

• It allows microservices to focus on their
core business logic.

• But these same services can augment
legacy or non-microservice services as well

Several use cases have been identified and
tested by the Cloud Native Compute Team

RETROFIT LEGACY

APPLICATIONS TO BEST

PRACTICES

ALLOW SERVICES AND

MICROSERVICES TO EXIST

TOGETHER AS FIRST CLASS

MEMBERS

ALLOW FOR A SINGLE

VECTOR FOR SECURITY AND

OPERATIONS

MANAGEMENT

HELP "NORMALIZE" A

NETWORK

PROVIDE A SIMPLER HA

SOLUTION

Service Mesh Used: Istio

• Community effort principally from Google,
IBM, Lyft, Cisco and VMWare

• Used as a basis for many ML projects,
including Kubeflow

• Also a foundation of KNative, a serverless
project

• Heavily reliant on Envoy

Envoy

• Community effort, originally created by Lyft

• CNCF graduated project

• Network proxy

• Designed for high usage and performance

Envoy Acts a Gatekeeper Between the World and the
Application

• Effect is transparent

• Traffic within namespace does not pass
through Envoy

A Full Featured Istio Service Mesh Can Be
Thought of as a Collection of Envoys

• In Istio, we can think that all traffic is
communication between envoy processes

• Monitoring Envoy is a proxy of monitoring
an application

• Configuration network is essentially the
configuration of Envoy instances

Istio Has
Other
Components

• A proxy by itself is just a proxy,
there must be a control plane that
configures these proxies

• While somewhat straightforward;
the biggest takeaway is that envoy
proxies are always being used as
gatekeepers

Tested Both Bare Metal and Cloud Environments

• To simulate different environments,
different infrastructure providers were used

• Bare Metal machines and Bare Metal
Kubernetes clusters

• AWS VMs and AWS-powered
Kubernetes clusters

Realistic Network
Topology

• Differentiated
ingress/egress from
Corporate vs Public
networks

• Customers from public
network

• Operations from
corporate network

Problem Description

REDIS - NORMALLY RUNNING

WITHOUT ENCRYPTION

WEB SERVICE WITHOUT TLS OR

AUTHENTICATION/AUTHORIZATION

Typical Problems

• Web service originally relied on
firewall rules only for protection

• Traffic to web service was done
over HTTP

• Traffic between redis and web
service was not encrypted

Improvements Made

• Enable TLS to web service
handled by service mesh

• Have service mesh process
authentication and
authorization through JWT

• Have transparent mTLS
encryption enabled between
web service and redis

Problem Description

MODERN WEB SERVICE RUNNING

IN KUBERNETES

LEGACY WEB SERVICE RUNNING

ON BARE METAL MACHINE

MYSQL DATABASE RUNNING IN

KUBERNETES

Typical Problems

• Hard coded IPs and ports for
legacy service to talk to mysql
service

• No transparent encryption
enabled between services

• Hard to differentiate traffic
going between bare metal
machine and kubernetes cluster

Improvements Made

• Have bare metal machine join
service mesh through mesh
expansion

• Service discovery managed
through service mesh - no hard
coded service IPs and ports

• Traffic control managed and
auditable through the service
mesh control plane

• Enable transparent mTLS
encryption across service mesh

Problem Description

EACH SERVICE HAVING THEIR OWN

WAY OF DELIVERING TLS CERTIFICATES

EACH SERVICE HAVING THEIR OWN

LOGGING SYSTEM

FIREWALL RULES SOMETIMES DONE

WITHIN KUBERNETES, SOMETIMES

DONE BY NETWORKING TEAM

Leverage Istio Control Plane

• Firewall rules implemeneted
mesh-wide

• TLS certificates managed by
service mesh

• Logging handled through
common vector

Problem Description

SERVICE ACCESS TWO PUBLIC

EXTERNAL APIS, TWITTER AND

FACEBOOK

NEED TO INSPECT TRAFFIC TO THESE

PUBLIC SERVICES - PROXY TLS

NEED TO ENSURE ONLY THIS SERVICE

TALKS TO THE EXTERNAL APIS

Typical Problems

• Because of proxy TLS, service
code works differently on
developer's laptop vs
production

• Often not handled with TLS
enabled

• Hard to audit to ensure only
whitelisted customers can talk
to whitelisted endpoints

Improvements Made

• Egress with TLS enabled in
service mesh

• Egress configured to talk to
specific proxy service

• Traffic route created for
whitelisted services to talk public
APIs

• Service Mesh certificate authority
included in service app build

• From service code perspective,
service is talking "naturally" to
public APIs

• Security Compliance is kept

Problem Description

FIRST WEB SERVICE IS ACCESSED

BY END USER

SECOND WEB SERVICE

ACCESSED BY FIRST WEB

SERVICE

SECOND SERVICE EXPERIENCES

UNEXPECTED DOWNTIME IN

SAME DATA CENTER

IDENTICAL CLUSTER EXISTS IN

ANOTHER DATA CENTER, HAS

EXCESS CAPACITY

Typical Problems

Handling failover to another

data center is typically hard

1

Handling encryption of the

traffic across data centers

can be even more difficult

2

Service Mesh Setup

• Two Clusters

• Two Control Planes

• Workload on Cluster 1 wants to
talk to a service that is normally
available on both networks

Global Service Registry

• Workloads on either cluster can
potentially connect to
service1.foo workload if they
ask for service1.foo.global

Workload is Offline

• service1.foo on cluster 1 is
currently down

• service1.foo.global does also
point to service1.foo on service
mesh 2

Service is available

• Traffic from Service Mesh 1 is
routed over to Service Mesh 2

• No downtime for customer

Better for HTTP services

Service Meshes are far more useful

for HTTP-based Services

REST, gRPC, Mongo, etc. Because of well known layer 7

capabilities

Matching, Mutating on HTTP parameters

Still useful to non HTTP-based

services

Less options because raw TCP is much more free-form

Come In With a Plan

Planning is needed to

have an optimal benefit

Understand what you're

trying to solve, especially

for sophisticated setups

like mesh expansion and

multiple data centers

Great Solution For Legacy Services

Ability to apply without any

application changes

Over-the-Wire Encryption

Authentication

Rate Limiting

Helps comply with modern security

recommendations

Great Solution for Fault Tolerance

Configuration driven fault tolerance is

easy to understand and quickly

implement

Versatility in Multi Cluster Service Mesh

deployment models means almost

every cluster can be securely linked

Helps pin data storage to specific

customer regions (EU data stored on

EU infrastructure)

Service Meshes are Almost a Must Have
For Microservices

But the benefits extend to regular services as well Consider how a service mesh can benefit your current

environment - it may be a great fit to your current

situation

